
Signal value might require some recalculation or signal update prior to being sent. Understandably, existing columns
in Excel configuration like multiply , add , bit_select might not be flexible enough. To overcome these limitations,
symbolic mathematical expressions can be configured to do calculations automatically on every update of a signal.

Optimized for speed
High parsing performance
if-then-else operator with lazy evaluation

Default implementation with many features
25 predefined functions
18 predefined operators

Unit support
Use postfix operators as unit multipliers (3m -> 0.003)

Table. Supported mathematical functions:

Name Argument count Explanation

sin 1 sine function (rad)

cos 1 cosine function (rad)

tan 1 tangent function (rad)

asin 1 arcus sine function (rad)

acos 1 arcus cosine function (rad)

atan 1 arcus tangens function (rad)

sinh 1 hyperbolic sine function

cosh 1 hyperbolic cosine

tanh 1 hyperbolic tangens function

asinh 1 hyperbolic arcus sine function

acosh 1 hyperbolic arcus tangens function

atanh 1 hyperbolic arcur tangens function

log2 1 logarithm to the base 2

log10 1 logarithm to the base 10

18.3 Mathematical functions

It should be noted that filling mathematical expression disables other mathematical scalar operations for a
single value such as multiply , add or bit_select . Other functions (primarily between several signals) are still
available such as operation.

Feature list:

Mathematical functions

log 1 logarithm to base e (2.71828...)

ln 1 logarithm to base e (2.71828...)

exp 1 e raised to the power of x

sqrt 1 square root of a value

sign 1 sign function -1 if x<0; 1 if x>0

rint 1 round to nearest integer

abs 1 absolute value

min variable min of all arguments

max variable max of all arguments

sum variable sum of all arguments

avg variable mean value of all arguments

floor 1 round down to the nearest integer

mod variable modulo operation

Table. Supported binary operators:

Operator Description Priority

= assignment -1

» right shift 0

« left shift 0

& bitwise and 0

| bitwise or 0

&& logical and 1

It should be noted that trigonometric functions (excluding hiperbolic functions) only support arguments in
radians. This means that arguments for this function have to be recalculated if angle is defined in degress.

Value recalculation is only triggered on signal change of the preconfigured signal. That means that using other
signals (via TagValue() call) does not trigger value update.

Some mathematical expression cannot be mathematically evaluated in some conditions, for example, square
root cannot be found for negative numbers. As complex numbers are not supported, result is then equal to Not a
Number (NaN). These results are marked with an invalid (IV) flag.

Binary operations

|| logical or 2

<= less or equal 4

>= greater or equal 4

!= not equal 4

== equal 4

> greater than 4

< less than 4

+ addition 5

- subtraction 5

* multiplication 6

/ division 6

^ raise x to the power of y 7

Ternary operators can be used. This expression can be compared to the operator supported by C/C++ language (Table
39). Condition is written before a question (?) sign. If condition is true, result after question sign is selected. If condition
is false, result after colon (:) is selected.

Table. Supported ternary operators

Operator Description Remarks

?: if then else operator C++ style syntax

Users can construct their own equation by using the aforementioned operators and functions. These examples can be
seen in Table below.

Table. Example expressions

Expression Description

value * 0.0001 Multiply the tag by a constant.

value + TagValue(”tag/dev_alias/sig_alias/out”) Add value of tag/dev_alias/sig_alias/out to the current tag.

sin(value) Return a predefined sine function value of the tag.

(value>5)? 1: 0 If the value is greater than 5, the result should be equal to 1, otherwise -
equal to 0

Variable called value is generated or updated on every signal change and represents the signals being configured. If
another value from tag list is intended to be used, one should use TagValue() function to retrieve its last value.

The inner argument of TagValue() function has to described in a Redis topic structure of WCC Lite. That means that it
has to be constructed in a certain way. Quotes should be used to feed the topic name value, otherwise expression
evaluation will fail.

Every Redis topic name is constructed as tag/[device_alias]/[signal_alias]/[direction]. Prefix tag/ is always used before
the rest of argument. device_alias and signal_alias represent columns in Excel configuration. direction can have
one of four possible values - rout, out, in, rin; all of which depend on the direction data is sent or acquired device-wise.
For example, out keyword marks data sent out of WCC Lite device, whereas in direction represents data that WCC Lite
is waiting to receive, for example, commands. Additional r before either direction means that data is raw, it was is
presented the way it was read by an individual protocol.

Ternary operations

Examples

Several functions are defined make tag operations possible:

TagValue(key) - returns last known value of tag identified by redis key;
TagFlag(key) - returns 1 if tag flag exists. Name format is: ”key flag”. For example to check if tag is notopical,
name would be ”tag/19xxxxxxx/x/x nt”;
TagAttribute(key) - similar to TagFlag, but returns a numeric value of a tag attribute;
TagTime(key) - returns UNIX timestamp in milliseconds of a last know tag value.

Revision #3
Created 21 March 2022 08:25:17 by Tautvilis
Updated 4 October 2022 07:07:13 by Tautvilis

Extra functions

	18.3 Mathematical functions
	Feature list:
	Mathematical functions
	Binary operations
	Ternary operations
	Examples
	Extra functions

