
The signals sheet contains all signals linked to devices. Each signal is defined in a single row. The Signal list can be
split into multiple sheets. Each sheet name may start as Signals.

These attributes are mandatory for every configured signal. Every Excel configuration should have specified them in
the first row of the Signals sheet:

signal_name - Name of the signal. Used for representation only.
device_alias - Alias of a device defined in Devices sheet. A signal is linked to a matching device.
signal_alias - A unique short name for the signal. It is used for linking signals to other signals. The alias can
only contain alphanumeric characters and dashes (- and _). Device and signal alias combination must be
unique.

Optional attributes are required depending on the protocol in use and they can be used to extend protocol
functionality:

source_device_alias - Alias of a source device defined in Devices sheet. If a user intends to use several
signals and combine them via mathematical or logical function, every alias should be separated by a newline
symbol (in the same cell). An operation used must also be defined in an operation column.
source_signal_alias - Alias of a source signal defined in Signals sheet. If a user intends to use several signals
and combine them via mathematical or logical function, every alias should be separated by a newline symbol
(in the same cell). An operation used must also be defined in an operation column. Each source_signal_alias
should be posted in the same line as its respective source_device_alias . Aliases can only contain
alphanumeric characters and dashes (- and _). Device and signal alias combination must be unique.
enable - Flag to enable or disable signal on the system. Can contain values 0 or 1.
tag_type - Tag type. Simple signals are polled from the device. Virtual signals are computed
internally.
off_message - Message to display when a single point or double point signals are in OFF state.
on_message - Message to display when a single point or double point signals are in ON state.
units - Signal value measurements units.
multiply - Multiply value by this number.
add - Add this number to a value.
sum_signals - Define other signal values to add to the current signal. This field uses following
format: dev_alias/tag_alias. Multiple signals can be defined using commas.
min_value - Minimum expected value. If the result is lower than this value, the invalid flag is raised.
max_value - Maximum expected value. If the result is higher than this value, the overflow flag is raised.
absolute_threshold - Absolute threshold level.
integral_threshold - Integral threshold level.
integral_threshold_interval - Integral threshold addition interval in milliseconds.
threshold_units - Units used in threshold level fields (percent/real).
log_size - Maximum number of records for this tag to keep in storage for CloudIndustries logging.
suppression_values - Space-separated numeric values to be used in suppression.
suppression_time_ms - Suppression time in milliseconds.
operation - Mathematical or logical operation to be used for signals defined in source_signal_alias column.
Following mathematical operations for source signal values can be used: avg (average of all values), min
(lowest value), max (highest value), median (median value), and sum (all values accumulated to a single
number). Logical operations, intended for unsigned integers only.
bit_select - selecting an individual bit of an integer number; bit numeration starts from zero.
math_expression - a mathematical expression for signal value to be evaluated against. Explained in detail in
Mathematical expressions document.

Picture. Result of using an absolute threshold:

33.2 Signals Configuration

Required attributes

Optional attributes

Picture. Result of using an integral threshold:

A value generated by some protocol usually has to be recalculated in one way or another. This might mean changing
the value of an argument as well as adding flags needed for other protocols to correctly interpret results. As
recalculation is a sequential process, some actions are done before others. The sequence of operations done to a value
is as follows:

Edition of attributes. Attributes for further interpretation are added. This might, for example, include a flag to
show that a signal resembles an answer to a command;
Mathematical calculations. multiply, add, bit_select, and math_expression columns are evaluated here;
Usage of last value. Decision if last value for a signal should be used if a new value of a signal is not a
number (NaN) or contains a non-topical (NT) flag;
Limiting of values. If a value exceeds a lower or higher configured limit, value is approximated not be lower
(or higher) than the limit. An additional invalid (IV) or overflow (OV) flag is added as frequently used in IEC-
60870-5 protocols;
Suppresion of values. As electrical circuits can be noisy, protocols may generate multiple values in a short
amount of time. What is more, some values are considered as intermediary and ideally should not be sent to
SCADA unless they stay in the same state for some amount of time. suppression_values and
suppression_time_ms are used to configure this functionality;
Threshold checking. If a new signal doesn’t cross a threshold target value, value is supressed and not used in
further stages. absolute_threshold, integral_threshold, integral_threshold_interval, threshold_units
columns are used to configure this functionality.

This field is required for some protocols to determine a method to retrieve a signal value from hexadecimal form.
Available values:

Signal recalculation operation priority

Not all of the elements in this sequence have to configured, missing operation are skipped and values are fed to
a further stage of signal recalculation.

number_type field

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601977355078.png

• FLOAT - 32-bit single precision floating point value according to IEEE 754 standard
• DOUBLE - 64-bit double precision floating point value according to IEEE 754 standard
• DIGITAL - 1-bit boolean value
• UNSIGNED8 - 8-bit unsigned integer (0 - 255)
• SIGNED8 - 8-bit signed integer (-128 - 127)
• UNSIGNED16 - 16-bit unsigned integer (0 - 65535)
• SIGNED16 - 16-bit signed integer (-32768 - 32767)
• UNSIGNED32 - 32-bit unsigned integer (0 - 4294967295)
• SIGNED32 - 32-bit signed integer (-2147483648 - 2147483647)
• UNSIGNED64 - 64-bit unsigned integer (0 - 18446744073709551615)
• SIGNED64 - 64-bit signed integer (-9223372036854775808 - 9223372036854775807)

Number conversion uses big endian byte order by default. Converted data will be invalid if byte order on connected
device side is different. In such case byte swap operations can be used. Adding swap prefixes to number type will set
different a byte order while converting values. Following swap operations are available:

SW8 - Swap every pair of bytes (8 bits) (e.g., 0xAABBCCDD is translated to 0xBBAADDCC);
SW16 - Swap every pair of words (16 bits) (e.g., 0xAABBCCDD is translated to 0xCCDDAABB);
SW32 - Swap every pair of two words (32 bits) (e.g., 0x1122334455667788 is translated to
0x5566778811223344);

Table. Example of using different swapping functions:

Address 0 1 2 3 4 5 6 7

Original
number Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

SW8 Byte 1 Byte 0 Byte 3 Byte 2 Byte 5 Byte 4 Byte 7 Byte 6

SW16 Byte 4 Byte 5 Byte 6 Byte 7 Byte 1 Byte 6 Byte 4 Byte 5

SW32 Byte 4 Byte 5 Byte 6 Byte 7 Byte 0 Byte 1 Byte 2 Byte 3

SW8.SW16 Byte 3 Byte 2 Byte 1 Byte 0 Byte 7 Byte 6 Byte 5 Byte 4

SW8.SW32 Byte 5 Byte 4 Byte 7 Byte 6 Byte 1 Byte 0 Byte 3 Byte 2

SW8.SW16.S
W32 Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Add a dot separated prefix to number format to use byte swapping. Multiple swap operations can be used
simultaneously. For example, use SW8.SW16.SIGNED32 to correctly parse a 32-bit signed integer in a little endian format.
Table 35 shows in detail how bytes, words or double words can be swapped and how swapping functions can be
combined to make different swapping patterns. Table shows how byte swap is done for 64-bit (8-byte) numbers. It
doesn’t matter if it is an unsigned/signed integer or double, byte swapping is considered a bit-level operation. If a
number is shorter than 64 bits, the same logic applies, the only difference is unavailability of some swapping
operations (SW32 for 32-bit and smaller numbers). Using such unavailable operation might lead to an undefined
behaviour.

Signals can be linked together to achieve data transfer between several protocols. If a signal source is defined, all
output from that source will be routed to the input of target signal. This way events polled from a modbus device (e.g.,
Modbus, IEC 60870-5, etc.) can be delivered to external station over a different protocol. A signal source is required if a
signal is created on a slave protocol configuration to link events between protocols.

To read a coil state from a Modbus device and transfer it to IEC 60870-5-104 station, following steps may be taken:

1. Create a Modbus master configuration in Devices sheet.
2. Create a IEC 60870-5-104 slave configuration in Devices sheet.

Where Byte x, means bit x position in byte.

Linking signals

Example 1:

https://wiki.elseta.com/books/rtu-usage/page/modbus
https://wiki.elseta.com/books/rtu-usage/chapter/protocols-configuration
https://wiki.elseta.com/books/rtu-usage/page/iec-60870-5-104

3. Create a signal on master device to read coil status (function 1).
4. Create a signal on slave device with single point type (data_type = 1).
5. Set source_device_alias and source_signal_alias fields on slave device signal to match device_alias and

ignal_alias on master device’s coil signal.

To write a coil state to a Modbus device on a command from IEC 60870-5-104 station, following steps may be taken:

1. Follow steps 1-3 from example 1.
2. Create a signal on slave device with single command type (data_type = 45).
3. Set source_device_alias and source_signal_alias fields on master configuration coil signal to match

device_alias and signal_alias on slave device’s command signal. Coil will be written to a value received by a
command.

4. Set source_device_alias and source_signal_alias fields on command signal to match device_alias and
signal_alias on master device’s coil signal. A command termination signal will be reported to the station on
coil write result.

Signal value might require some recalculation or signal update prior to being sent. Understandably, existing columns
in Excel configuration like multiply , add , bit_select might not be flexible enough. To overcome these limitations,
symbolic mathematical expressions can be configured to do calculations automatically on every update of a signal.

Optimized for speed
High parsing performance
if-then-else operator with lazy evaluation

Default implementaion with many features
25 predefined functions
18 predefined operators

Unit support
Use postfix operators as unit multipliers (3m -> 0.003)

Table. Supported mathematical functions:

Name Argument count Explanation

sin 1 sine function (rad)

cos 1 cosine function (rad)

tan 1 tangent function (rad)

asin 1 arcus sine function (rad)

acos 1 arcus cosine function (rad)

atan 1 arcus tangens function (rad)

sinh 1 hyperbolic sine function

Example 2

For additional information regarding the configuration of IEC 60870-5-101/103/104 protocols, please refer to ”IEC
60780-5-101/103/104 PID interoperability for WCC Lite devices”, accordingly.

Introduction

It should be noted that filling mathematical expression disables other mathematical scalar operations for a
single value such as multiply , add or bit_select . Other functions (primarily between several signals) are still
available such as operation.

Feature list:

Mathematical functions

https://wiki.elseta.com/books/rtu-usage/page/iec-60870-5-104

cosh 1 hyperbolic cosine

tanh 1 hyperbolic tangens function

asinh 1 hyperbolic arcus sine function

acosh 1 hyperbolic arcus tangens function

atanh 1 hyperbolic arcur tangens function

log2 1 logarithm to the base 2

log10 1 logarithm to the base 10

log 1 logarithm to base e (2.71828...)

ln 1 logarithm to base e (2.71828...)

exp 1 e raised to the power of x

sqrt 1 square root of a value

sign 1 sign function -1 if x<0; 1 if x>0

rint 1 round to nearest integer

abs 1 absolute value

min variable min of all arguments

max variable max of all arguments

sum variable sum of all arguments

avg variable mean value of all arguments

Table. Supported binary operators:

Operator Description Priority

= assignment -1

» right shift 0

It should be noted that trigonometric functions (excluding hiperbolic functions) only support arguments in
radians. This means that arguments for this function have to be recalculated if angle is defined in degress.

Value recalculation is only triggered on signal change of the preconfigured signal. That means that using other
signals (via TagValue() call) does not trigger value update.

Some mathematical expression cannot be mathematically evaluated in some conditions, for example, square
root cannot be found for negative numbers. As complex numbers are not supported, result is then equal to Not a
Number (NaN). These results are marked with an invalid (IV) flag.

Binary operations

« left shift 0

& bitwise and 0

| bitwise or 0

&& logical and 1

|| logical or 2

<= less or equal 4

>= greater or equal 4

!= not equal 4

== equal 4

> greater than 4

< less than 4

+ addition 5

- subtraction 5

* multiplication 6

/ division 6

^ raise x to the power of y 7

Ternary operators can be used. This expression can be compared to the operator supported by C/C++ language (Table
39). Condition is written before a question (?) sign. If condition is true, result after question sign is selected. If condition
is false, result after colon (:) is selected.

Table. Supported ternary operators

Operator Description Remarks

?: if then else operator C++ style syntax

User can construct his own equation by using the aforementioned operators and functions. These examples can be
seen in Table bellow.

Table. Example expressions

Expression Description

value * 0.0001 Multiply the tag by a constant.

value + TagValue(”tag/dev_alias/sig_alias/out”) Add value of tag/dev_alias/sig_alias/out to the current tag.

sin(value) Return a predefined sine function value of the tag.

(value>5)? 1: 0 If value is greater than 5, result should be equal to 1, otherwise - equal
to 0

Variable called value is generated or updated on every signal change and represent the signals being configured. If
another value from tag list is intended to be used, one should use TagValue() function to retrieve its last value.

The inner argument of TagValue() function has to described in a Redis topic structure of WCC Lite. That means that it

Ternary operations

Examples

has to be constructed in a certain way. Quotes should be used to feed the topic name value, otherwise expression
evaluation will fail.

Every Redis topic name is constructed as tag/[device_alias]/[signal_alias]/[direction]. Prefix tag/ is always used before
the rest of argument. device_alias and signal_alias represent columns in Excel configuration. direction can have
one of four possible values - rout, out, in, rin; all of which depend on the direction data is sent or acquired device-wise.
For example, out keyword marks data sent out of WCC Lite device, whereas in direction represents data that WCC Lite
is waiting to receive, for example, commands. Additional r before either direction means that data is raw, it was is
presented the way it was read by an individual protocol.

Several functions are defined make tag operations possible:

TagValue(key) - returns last known value of tag identified by redis key;
TagFlag(key) - returns 1 if tag flag exists. Name format is: ”key flag”. For example to check if tag is notopical,
name would be ”tag/19xxxxxxx/x/x nt”;
TagAttribute(key) - similar to TagFlag, but returns a numeric value of a tag attribute;
TagTime(key) - returns unix timestamp in milliseconds of a last know tag value.

Revision #13
Created 11 October 2021 10:29:32 by Tautvilis
Updated 6 June 2024 11:22:01 by Andrej

Extra functions

	33.2 Signals Configuration
	Required attributes
	Optional attributes
	Signal recalculation operation priority
	number_type field
	Linking signals
	Example 1:
	Example 2

	Introduction
	Feature list:
	Mathematical functions
	Binary operations
	Ternary operations
	Examples
	Extra functions

