
A programmable logic controller (PLC) is a digital device adapted for control of processes which require high reliability,
ease of programming and real​time responses. Such functionality has long since replaced hard​wired relays, timers and
sequencers which would be required to complete various tasks. Programmable logic controllers usually had to conform
to IEC 61131​3 standard which defines four programming languages: function block diagram (FBD), ladder diagram
(LD), structured text (ST) and sequential function chart (SFC). This standard does not support distributed control
systems therefore IEC 61499 standard was published in 2005. The standard is considered an extension of IEC 61131​3
standard. WCC Lite supports PLC functionality while conforming to specifications of IEC 61499 standard.

20.1 IEC 61499
20.2 4Diac framework
20.3 Example project
20.4 Configuring data endpoints
20.5 Debugging an IEC 61499 application
20.6 Generating and uploading FORTE logic file
20.7 Distributed control application

20 Programmable logic
controller

IEC 61499-1 defines the architecture for distributed systems. In IEC 61499 the cyclic execution model of IEC 61131 is
replaced by an event-driven execution model. The event-driven execution model allows for an explicit specification of
the execution order of function blocks. If necessary, periodically executed applications can be implemented by using
the E_CYCLE function block for the generation of periodic events.

IEC 61499 enables an application-centric design, in which one or more applications, defined by networks of
interconnected function blocks, are created for the whole system and subsequently distributed to the available
devices. All devices within a system are described within a device model. The topology of the system is reflected by
the system model. The distribution of an application is described within the mapping model. Therefore, applications of
a system are distributable but maintained together.

Like IEC 61131-3 function blocks, IEC 61499 function block types specify both an interface and an implementation. In
contrast to IEC 61131-3, an IEC 61499 interface contains event inputs and outputs in addition to data inputs and
outputs. Events can be associated with data inputs and outputs by WITH constraints. IEC 61499 defines several
function block types, all of which can contain a behaviour description in terms of service sequences:

Service interface function block – SIFB: The source code is hidden and its functionality is only described by service
sequences;
• Basic function block - BFB: Its functionality is described in terms of an Execution Control Chart (ECC), which is similar
to a state diagram (UML). Every state can have several actions. Each action references one or zero algorithms and one
or zero events. Algorithms can be implemented as defined in compliant standards.
• Composite function block - CFB: Its functionality is defined by a function block network.
• Adapter interfaces: An adapter interface is not a real function block. It combines several events and data connections
within one connection and provides an interface concept to separate specification and implementation.
• Sub application: Its functionality is also defined as a function block network. In contrast to CFBs, sub-applications can
be distributed.

To maintain the applications on a device IEC 61499 provides a management model. The device manager maintains the
lifecycle of any resource and manages the communication with the software tools (e.g., configuration tool, agent) via
management commands.

20.1 IEC 61499

The PLC functionality in the WCC Lite is implemented using the Eclipse 4diac framework, consisting of the 4diac IDE
and the 4diac FORTE runtime. The system corresponds to IEC 61499, an extension of IEC 61131-3. For more in-depth
instructions and function block reference please see the 4diac manual - this document is merely a quick start guide
that emphasizes the specifics of tailoring the applications to run on the WCC Lite.

The 4diac IDE application is used to model logic sequences. An output file, *.fboot, is then generated and either loaded
into the runtime for debugging purposes (functionality available from within the IDE) or uploaded into the controller for
normal use via the web interface.

The 4diac FORTE runtime can execute the aforementioned fboot files containing the logic. The FORTE runtime can be
run on both the WCC Lite and a PC for debugging purposes. The runtime is integrated to interact with the REDIS
database.

20.2 4Diac framework

During debugging, the output logic is executed directly in the runtime. Any logic loaded during debugging will be
discarded after a reboot of the controller. Logic applications for regular use should be uploaded via the web
interface.

It is possible to run multiple tasks at once. These tasks can either be implemented on the same screen or split
into separate tasks. Please note, however, that all elements should have unique names, even between different
tasks. As of 4Diac IDE 1.11.3, this is not enforced between separate apps, however, 4Diac runtime application
rejects such files purely because of naming issues.

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601992021990.png

The best way to understand the basics of 4Diac and WCC Lite collaboration is through an example project. This user
manual intends to show the pieces needed to run PLC applications on WCC Lite. It is not intended to be a definitive
guide on how to use 4Diac IDE or how to interpret the IEC 61499 standard.

During (at least) the first start of the IDE user will be asked to select a directory for the workspace as in Figure.
Workspace is used to save files needed for projects.

After that, a user should be met by the welcome window. If such a window is not shown, one can create a project by
selecting File -->New --> Project and filling in the required fields.

Here is a library of function blocks, which are working with the newest 4Diac version: Elseta Library.zip. Upload the
library to your project folder.

To create a simple application, simply drag and drop objects from the palette to the canvas and wire them accordingly.
Event trigger and data pathways cannot be connected. Displayed below is an example of a simple blinker application.

20.3 Example project

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601992159243.png
https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601992177394.png
https://wiki.elseta.com/attachments/536

In the System Configuration section, drag and drop a FORTE_PC device, and an Ethernet segment and link them. For
debugging in the local (PC) runtime, leave the address ”localhost:61499”. For testing on a WCC Lite, enter the IP
address of the device, along with the port number (which by default is 61499 as well).

Having less wiring by connecting several signals to the same subnet as PCB designer (such as Altium Designer)
as of 4Diac IDE 1.11.3 is not supported. However, if some parts are used frequently, it is highly advised to have
less wiring by simply compiling several elements into a sub-application. For this, you would have to select
elements to be grouped, press the right key and select New Sub application. You can later change the names of
such elements and their pins.

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601992239152.png
https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601992245178.png

To deploy the application, the circuit needs to be mapped to the controller. For a non-distributed application
(distributed application cases will not be discussed in this chapter), all the FBs of the application need to be selected
and mapped to the configured controller as shown:

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601992273595.png

To start the application execution, an initial trigger needs to be present. For a non-distributed application, the initial
event trigger needs to be wired from the START function block in the resource section as shown:

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601992299991.png

To deploy the application, go to the System Configuration tab and simply select ”Deploy” from the right-click menu of
the controller device. If a running application exists in the runtime, you may be asked whether you want to replace it.
This will only overwrite the application in the memory and not the storage. If the controller is restarted, the old
application will be loaded from the non-volatile memory of the controller.

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601992323578.png
https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601992330383.png

To use WCC Lite as a programmable logic controller, it needs to be configured in a particular way. The PLC functionality
of the WCC Lite only allows for the use of data that has been configured in the Excel configuration spreadsheet. This
has been done for security purposes and to preserve transmission medium only for data that is available. Only topics
defined in the configuration can post or get data. If a certain data entry exists but has not been linked to a PLC
program, all calls from the PLC runtime application to the Redis database will be ignored. Therefore it is highly advised
to prepare and upload the Excel configuration before using this signal in the PLC application.

Some parameters are mandatory for PLC usage. These parameters are shown in two tables below (one for Devices,
and one for Signals tab). Please note that other parameters can be used as well, but are not covered because they
aren’t specific to PLC functionality.

Table. Mandatory parameters for the Devices tab

Parameter Type Description

name string User-friendly device name

device_alias string Device alias to be used in configuration

enable boolean Enabling/disabling of a device

protocol string Selection of protocol (IEC 61499)

Table. Mandatory parameters for the Signals tab

Parameter Type Description

signal_name string User-friendly signal name

device_alias string Device alias from a Devices tab

signal_alias string Unique signal name to be used

source_device_alias string device_alias of a source device

source_signal_alias string signal_alias of a source signal

If an upload consisting of configuration for IEC 61499 has been successful, one should be able to access a configuration
stored in /etc/iec61499.json file where protocol-specific parameters are shown in a JSON format. If the file is missing,
make sure you have the correct firmware version installed and haven’t made any typing errors.

Parameters mentioned earlier, namely device_alias and signal_alias, are the only parameters one needs to fill to bind
Excel configuration to the 4Diac framework. Two types of blocks are used for data transmission - PUBLISH blocks to
write data to the REDIS database and SUBSCRIBE blocks to acquire data from the database as soon as it changes its
value. Both of them have an ID connection. To connect a block to a data point, one should set this pin as
raw[].redis[device_alias,signal_alias], e.g. raw[].redis[example_plc_device,example_plc_signal_alias]. As of version
2.0.0, the pin values must be surrounded by double commas.

Examples with SUBSCRIBE and PUBLISH function blocks are shown in the images below.

Subscribe and publish examples in the older versions

20.4 Configuring data endpoints

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1602661793915.png

Subscribe and publish examples in the newer versions (from 2.0.0)

If every step until now has been successful, the user can now proceed to debug the PLC application.

Outputs of variable type ANY cannot be directly wired to inputs of the same type and therefore need to be
explicitly typed using transitional function blocks.

No more than 20 tags should be published over 5 seconds, as this may overfill the queue. A ”publish only on
change” policy is advised.

Currently, only PUBLISH_1 and SUBSCRIBE_1 function blocks are supported.

The functionality of the subscribe function is dependent on the presence of the "F_STRING_TO_" function block,
for example (F_STRING_TO_REAL). Likewise, the publish function's proper operation relies on the availability of
the "F_ _TO_STRING" FB, for example (F_REAL_TO_STRING).

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691056876637.png

After a project has been built and bound to an existing Excel configuration, a user would normally want to check if
every part is working according to the prior requirements before compiling the finished project and uploading it to
production. Both the 4Diac framework and WCC Lite offer tools for flexible debugging.

There is a possibility that 4Diac FORTE might not start as a process. It may happen if multiple faults occur and the
process has stopped. The process is also programmed to not start if no Excel configuration file is found, therefore a
user should make sure that Excel configuration is uploaded and ready for use.

Individual function blocks can be set to Watch mode: events can be triggered and values can be forced at inputs or
outputs (look into images below). To monitor the function blocks, the application should be deployed and the IDE
should be in Online mode (Debug --> Monitor System --> NewSystem).

Selecting watch mode:

Function blocks in watch mode:

20.5 Debugging an IEC 61499
application

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1602662191072.png

Seeing information dynamically updated on 4Diac IDE might be very informative, however, some applications might
require accessing WCC Lite via a command-line interface. For example, in case of information not being updated one
would want to ensure that 4Diac FORTE in WCC Lite is not filtering data out but sending it to the internal database
(Redis). To run 4Diac FORTE debug from the command-line interface, a user should write forte and press Enter. All
possible choices are shown by adding the -h flag. A debugging example would be: '/etc/init.d/forte stop' to stop any
forte processes, 'forte -d7 -r -f /etc/forte/yourfbootfilename.fboot' to launch the debug. More flags are shown in the
Table below. Make sure to stop any running process that could use the address that the 4Diac framework is going to
use.

Table. 4Diac FORTE command line debugging options:

-h - Display help information
-c <IP>:<port> - Set the listening IP and port for the incoming connections
-r - Show redis messages
-d <debug level> - Set debugging level

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1602662206569.png

After the PLC design is finished and debugged, such a design can be compiled into an FBOOT file and uploaded to one
or multiple devices to be used in production. As the application being debugged is not automatically considered as a
default application, one should be uploaded explicitly via the web interface.

To generate FORTE boot files a user should select Run->Create FORTE boot-file.... After that one should select devices
which should have their boot files created as well as additional devices’ properties and directories where these files
should be stored as in the picture below.

Generating FBOOT file:

The upload button for the FORTE files in the web interface can be found in the Protocol Hub tab, Configuration screen
(FORTE boot file upload supported for versions v1.4.0 and above). You should see a view in the picture below.

WCC Lite Web interface. Upload and download of 4Diac configuration files:

After the file has been imported one should be able to download it from the same screen as seen in the picture before.

20.6 Generating and uploading
FORTE logic file

Please note that only files with the *.fboot extension are allowed.

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1602662453356.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1689332420225.png

Uploading a file saves it's name and shows it in the web interface. It is advised to carefully choose a filename to
separate different versions of PLC application files.

IEC 64199 standard introduced requirements for distributed control. This means that multiple devices can change
information between them and make their own decisions based on the data they receive from other sources. This
enables distributed applications between multiple WCC Lite devices and all other devices that support IEC 61499.

Communication between devices can be configured using:

Publish/Subscribe function blocks (via UDP packets);
Client/Server function blocks (via TCP packets).

A Publish block can publish data messages using UDP multi-cast addresses meaning that multiple devices would be
able to simultaneously get the same data. However, one would have to make sure that all of the devices support the
multi-cast option.

This user manual will only cover setting up point-to-point communication between devices via Publish/Subscribe
blocks. For more information on communication between several IEC 61499 devices please check the documentation
for Eclipse 4diac framework.

Let’s say we would like to count how many times the light has been turned on. For this, we can add counting
functionality to the application shown in the picture below. The application should run on 2 devices. The blinking part of
the application will run on a 4diac FORTE and the count on another 4diac FORTE, see the architecture below. The two
different programs running on two separate WCC Lite devices emulate two PLCs. Two different devices can be
identified by different colours of function blocks. One can identify the device and its properties by accessing the
System Configuration screen as seen below. Yellow function blocks belong to the WCC_212 device which can be
accessed through 192.168.4.212 (port number 61499) whereas brown function blocks belong to the WCC_218 device
which can accessed through 192.168.4.218 (port number 61499).

Example blinking application as a distributed system:

Example system configuration for a distributed system:

20.7 Distributed control
application

https://wiki.elseta.com/link/851#bkmrk-page-title
https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1602662769321.png

Example app for blinking part of a distributed system:

Example app for counting part of a distributed system:

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1602662862391.png
https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1602662875556.png

To count the blinking, two new Function Blocks (FBs) have been added to the existing application for a different device
(WCC_218):

E_PERMIT
E_CTU

To communicate between devices, an additional PUBLISH_X/SUBSCRIBE_X pair must be used. As one can identify,
these blocks are not seen when looking at a whole distributed system and should be seen as an intermediary between
devices.

The PUBLISH_X FB is used to send messages over the network which are received by an SUBSCRIBE_X FB. Every time a
REQ is triggered, a message is sent according to the ID input. With the value of the ID input, you can specify what
specific network protocol you would like to use (e.g., MQTT). If you don’t specify a dedicated protocol the default as
defined in the ”IEC 61499 Compliance Profile for Feasibility Demonstrations” is used. The number X in PUBLISH_X is the
number of data elements that you want to send in the message. Since we are only sending one value we used
PUBLISH_1.

The used ID value specifies an IP: PORT pair.

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1602662888137.png

	20 Programmable logic controller
	20.1 IEC 61499
	20.2 4Diac framework
	20.3 Example project
	20.4 Configuring data endpoints
	20.5 Debugging an IEC 61499 application
	20.6 Generating and uploading FORTE logic file
	20.7 Distributed control application

