
MQTT (short for MQ Telemetry Transport) is an open OASIS and ISO standard (ISO/IEC PRF 20922) lightweight, publish-
subscribe network protocol that transports messages between devices. The protocol usually runs over TCP/IP, although
its variant, MQTT-SN, is used over other transports such as UDP or Bluetooth. It is designed for connections with
remote locations where a small code footprint is required or the network bandwidth is limited.

The broker acts as a post office, MQTT doesn’t use the address of the intended recipient but uses the subject line
called “Topic”, and anyone who wants a copy of that message will subscribe to that topic. Multiple clients can receive
the message from a single broker (one to many capability). Similarly, multiple publishers can publish topics to a single
subscriber (many to one).

Each client can both produce and receive data by both publishing and subscribing, i.e. the devices can publish sensor
data and still be able to receive the configuration information or control commands. This helps in both sharing data,
managing and controlling devices.

With MQTT broker architecture the devices and application becomes decoupled and more secure. MQTT might use
Transport Layer Security (TLS) encryption with user name, password protected connections, and optional certifications
that requires clients to provide a certificate file that matches with the server’s. The clients are unaware of each others
IP address.

The broker can store the data in the form of retained messages so that new subscribers to the topic can get the last
value straight away.

The main advantages of MQTT broker are:

Eliminates vulnerable and insecure client connections
Can easily scale from a single device to thousands
Manages and tracks all client connection states, including security credentials and certificates
Reduced network strain without compromising the security (cellular or satellite network)

Each connection to the broker can specify a quality of service measure. These are classified in increasing order of
overhead:

At most once - the message is sent only once and the client and broker take no additional steps to
acknowledge delivery (fire and forget).
At least once - the message is re-tried by the sender multiple times until acknowledgement is received
(acknowledged delivery).
Exactly once - the sender and receiver engage in a two-level handshake to ensure only one copy of the
message is received (assured delivery).

MQTT serves as an alternative for protocols conforming to IEC standards, for example, to send data to a cloud
infrastructure that supports MQTT instead of IEC-60870-5-104.

All standard functions, except for data encryption, are supported. Encrypted messages are not supported yet,
therefore to ensure security a user would have to use a VPN service. A user can choose from three different Quality of
Service levels, select if messages are to be retained, authenticate users and optionally send Last Will messages.

To configure WCC Lite a user can fill in the needed parameters in Excel configuration. These parameters are shown in
the two tables below.

Table. MQTT parameters for Devices tab

Parameter Type Description Required
Default value

(when not
specified)

Range

Min Max

22 MQTT
Introduction

Using WCC Lite as MQTT Client

WCC Lite supports MQTT messaging compatible with MQTT v3.1 standard (starting from version v1.4.0). Such
messaging is possible via mapping of Redis and MQTT data therefore data can be transmitted from any protocol
that is supported by WCC Lite.

name string User-friendly
device name Yes

device_alias string
Device alias to be
used in the
configuration

Yes

enable boolean Enabling/disabling
of a device No 0 0 1

protocol string Selection of
protocol Yes MQTT

ip string
MQTT broker IP
address/Domain
name selection

Yes

port integer MQTT broker port
selection No 1883

enable_threshold boolean

A parameter to
determine if
identical values
should not be sent
multiple times in a
row.

No 1 0 1

mqtt_qos integer
MQTT Quality of
Service for
message as in
standard

No 0 0 2

mqtt_retain boolean

Selecting if MQTT
broker should
retain last
received
messages

No 0 0 1

user string MQTT user name Yes

password string MQTT user
password Yes

auth string Selecting if TLS
should be used No tls

ca_certificate string
Certificate
authority file for
TLS connection

Yes
(If auth=tls)

client_certificate string
Client certificate
file for TLS
connection

Yes
(If auth=tls)

client_key string

Private key that
corresponds to
the client
certificate for TLS
connection

Yes
(If auth=tls)

use_last_will boolean

Selecting if MQTT
should use Last
Will and
Testament
functionality
(Default: False)

No 0 0 1

last_will_topic string

Topic to which an
MQTT message
would be sent if
the device
abruptly
disconnected
message broker

Yes
(If
use_last_will=True
)

last_will_message string

Message to be
sent over MQTT if
the device
abruptly
disconnected
message broker

No

last_will_qos integer
MQTT Quality of
Service selection
as in standard

No 0 0 2

last_will_retain boolean
Selecting if MQTT
broker should
retain last will
message

No 0 0 1

client_id string User-friendly
name for client id No

To map the signal to send through MQTT client, it should have its device_alias and signal_alias mapped to
source_device_alias and source_signal_alias respectively.

Table. MQTT parameters for Signals tab

Parameter Type Description Required
Default value

(when not
specified)

Range

Min Max

signal_name string User-friendly
signal name Yes

device_alias string Device alias from
a Devices tab Yes

signal_alias string Unique signal
name to be used Yes

source_device_ali
as string device_alias of a

source device Yes

source_signal_alia
s string signal_alias of a

source signal Yes

enable boolean
Enabling/disabling
of an individual
signal

No 1 0 1

log integer
Allow signal to be
logged. Log signal
with 1 and no
logging with 0.

No 0

topic string
Topic name to
override the value
built by default

No

The format of a MQTT message is a bit different than Redis messages. Redis messages are supported as CSV strings:
value, timestamp, flags (where value can be float, integer or nan; timestamp - Unix timestamp in milliseconds; flags
contain additional information about a measurement). MQTT messages are supported as value, timestamp, quality
(where value can be float, integer or nan; timestamp - Unix timestamp in milliseconds; quality shows if a value is to be
considered as valid). Quality parts of a string is always equal to 1 except for Redis messages containing invalid (IV),
non-topic (NT) and/or overflow (OV) flags.

As mentioned, MQTT client acts as an adapter between Redis and MQTT, therefore data from topic in Redis is written
to a topic in MQTT. Therefore mqtt-client has to know the mapping table before starting. This table is saved at
/etc/elseta-mqtt.json. Every Redis topic name is constructed as tag/[device_alias]/[signal_alias]/[direction]. Prefix tag/
is always used before the rest of argument. device_alias and signal_alias represent columns in Excel configuration.
Direction can have one of four possible values - rout, out, in, rin; all of which depend on the direction data is sent or
acquired protocol-wise. The same Redis topic structure is preserved in MQTT by default making it easier to find
matching signals, however, as no recalculation is done by MQTT and only PUBLISH messages are now supported, only
Redis signals with in direction have their MQTT mappings.

A user can create and select his own topic name in Excel configuration, in topic column. As no recalculation is done by
MQTT and only PUBLISH messages are now supported, only Redis signals with in direction have their MQTT mappings.

If configuration for MQTT is set up, handler for protocol will start automatically. If configuration is missing parameters
or contains errors, protocol will not start. It is done intentionally to decrease unnecessary memory usage.

MQTT Client command line debugging options

mqtt-client

MQTT data format

Debugging a MQTT protocol

Revision #2
Created 11 January 2024 09:21:44 by Gabriele
Updated 17 January 2024 08:51:52 by Mantas Savickas

-h [–help] Display help information
-c [–config] Configuration file location (default - /etc/elseta-mqtt.conf)
-V [–version] Show version
-d<debug level> [–debug] Set debugging level
-r [–redis] Show REDIS output
-m [–mqtt] Show MQTT output

If MQTT Client does not work properly (e.g. no communication between devices, data is corrupted, etc.), a user
can launch a debug session from command line interface and find out why link is not functioning properly.

To launch a debugging session, a user should stop mqtt-client process and run mqtt-client command with
respective flags as was shown above.

	22 MQTT
	Introduction
	Using WCC Lite as MQTT Client
	MQTT data format
	Debugging a MQTT protocol

