
13.1 Introduction
13.2 Modbus Master
13.3 Modbus Slave

13 Modbus

Modbus is a communication protocol for use with its programmable logic controllers (PLCs). Modbus has become a de
facto standard communication protocol and is now a commonly available means of connecting industrial electronic
devices. It was developed for industrial applications, is relatively easy to deploy and maintain compared to other
standards, and places few restrictions other than size on the format of the data to be transmitted.

Modbus enables communication among many devices connected to the same network, for example, a system that
measures temperature and humidity and communicates the results to a computer. Modbus is often used to connect a
supervisory computer with a remote terminal unit (RTU) in supervisory control and data acquisition (SCADA) systems.
Many of the data types are named from industry usage of Ladder logic and its use in driving relays: a single-bit
physical output is called a coil, and a single-bit physical input is called a discrete input or a contact.

WCC Lite supports both Modbus Master and Slave protocols. One can select between transmission over TCP/IP or serial
connection (RS-485/RS232). Bytes to transmit can either be encoded according to both RTU and ASCII parts of
standard.

13.1 Introduction

Modbus communication contains a single Master and may include more than 1, but not more than 247 devices. To
gather data from peripheral devices, master device request a cluster of slave devices for data. If any device
understand that this message is addressed for it – it replies with data. As no timestamp is sent along with data, having
recent data requires frequent polling. WCC Lite can be configured to acquire data periodically in custom-defined
intervals.

To use Modbus Master in WCC Lite, it has to be configured via an Excel configuration. This configuration contains two
Excel sheets where parameters have to be filled in - Devices and Signals

Parameter Type Description
Required Default

Value
(when not
specified)

Range

TCP RTU/A
SCII Min Max

name string User-friendly name for a device Yes Yes

description string Description of a device No No

device_alias string Alphanumeric string to identify a
device Yes Yes

enable boolean Enabling/disabling of a device No No 1 0 1

protocol string Protocol to be used Yes Yes Modbus RTU, Modbus TCP

ip string IP address of TCP slave device Yes -

port integer TCP communication port Yes - 502

bind_address string
IP address of network adapter used
to connect to slave device
(Default: ”0.0.0.0”)

No No 0.0.0.0

 id integer Modbus Slave ID Yes Yes

mode string

Choosing between RTU (”rtu”),
ASCII
(”ascii”) and TCP(”tcp”) modes.
ASCII
is the same as RTU, but with ASCII
symbols.

No No
TCP (for TCP)
RTU (for
Serial)

rtu, ascii, tcp

timeout_ms integer Response timeout in milliseconds Yes Yes 10000

device string Communication port
(”PORT1”/”PORT2”) - Yes PORT1 PORT2

baudrate integer Communication speed, baud/s - Yes 9600
300, 600, 1200, 2400, 4800,
9600, 19200, 38400, 57600,
115200

13.2 Modbus Master

Configuring datapoints

Modbus Master parameters for Devices tab

databits integer Data bit count for communication - Yes 8 6 9

stopbits integer Stop bit count for communication - Yes 1 1 2

parity string Communication parity option - Yes none none, even, odd

flowcontrol string
Number of requests, before link is
considered lost (device status
signals are changed) and reconnect
attempt will be issued

- Yes none none

scan_rate_ms integer

If provided and positive - all jobs will
have similar scan rate - all reads
and writes will be executed within
this timeframe (parameter
scan_rate_ms in Signals tab will be
ignored)

Yes Yes 300

retry_count integer
Number of requests, before link is
considered lost (device status
signals are changed) and reconnect
attempt will be issued

No No 3

serial_delay integer RS485 delay between read and
write operations in milliseconds - Yes 50

keep_alive_timeout integer Time interval for sending a keep
alive packet (in milliseconds) No No 60

modbus_multi_write boolean
Use 15/16 functions to write 1
register/coil
(Default: 0)

No No 0 0 1

comm_restart_delay integer
Time delay between disconnecting
from slave device and restarting
connection (in milliseconds)
(Default: 500)

No - 500

update boolean Enable to keep updating the tags
even if they have the same value. No No 0 0 1

Parameter Type Description
Required Default

Value
(when not
specified)

Range

TCP RTU/A
SCII Min Max

signal_name string User-friendly signal name Yes Yes

device_alias string Alphanumeric string to identify a
device Yes Yes

signal_alias string Unique alphanumeric name of the
signal to be Yes used Yes Yes

Modbus Master parameters for Signals tab

enable boolean Enabling/disabling of an individual
signal No No 1 0 1

job_todo string

Request to send according to
Modbus specification without
device address and checksum. This
field can be identical on several
tags to fetch them in single request

Yes Yes

tag_job_todo string

Similar format to job_todo field.
Address and length must be a
subset of job field. Defines the
individual tag’s register(s) or coil(s).
Can be described in HEX or DEC
formats

Yes Yes

number_type string Type of a number (FLOAT, DOUBLE,
DIGITAL, etc.) Yes Yes

log integer Size of this signal’s log in Event log. No No 0

pulse_short_time_ms integer Time interval for short output pulse
to stay active No No 0

pulse_long_time_ms integer Time interval for long output pulse
to stay active No No 0

Modbus Master has an additional signal which can be configured to show communication status. It is used to indicate if
the slave device has disconnected from master (WCC Lite). To configure such signal for Modbus protocol, job_todo and
tag_job_todo fields with string values are required. For Modbus master required parameters for status signal will be:
signal_name device_alias, signal_alias, number_type, job_todo and tag_job_todo. Job_todo value must be
device_status and for tag_job_todo there are 4 variations: communication_status, device_running, device_error,
uknown_error. Each signal has 4 possible values and are based on the same logic. If signal returns value of 0, it means
unknown error has appeared, 1 – device or protocol connection is on and working properly, 2 – device is off or protocol
is disconnected, 3 – error or service is down.

Different device vendors can have different implementations of a Modbus protocol stack. A register table can be a one
of the primary differences. WCC Lite Modbus Master transmits the most significant word (byte) first, however, devices
from some vendors might require transmitting the least significant word (byte) first. If that is the case, make sure to
switch bytes as needed. To find out more about setting a correct number format, one should consult a section
number_type .

Modbus job or tag (as a task to be completed) can be built in two different formats - user can select a more convenient
way for him:

hexadecimal format with every single byte separated by | symbol. Device address, bytes containing output
information and CRC (LRC) bytes should be excluded from the message;
decimal format containing function number, first address and address count, separated by ; symbol. All other
information should be excluded from the message;

job_todo can group several tag_job_todo ’s. That way one Modbus message can be used to extract several tags.
Grouping is accomplished dynamically meaning that if several identical jobs are found, their tags are grouped
automatically.

If configuration for Modbus Master is set up, handler for protocol will start automatically. If configuration is missing or
contains errors, protocol will not start. It is done intentionally to decrease unnecessary memory usage.

Modbus Master command line debugging options

modbus-master

Device status signals

Debugging a Modbus Master application

-h [–help] Display help information
-V [–version] Show version
-d<debug level> Set debugging level
-c [–config] Config path
-r [–raw] Show raw telegram data
-f [–frame] Show frame data
-s [–serial] Show serial port data
–tcp Show tcp packets
–ascii Show ASCII messages

https://wiki.elseta.com/link/859#bkmrk-number_type-field

If Modbus Master does not work properly (e.g. no communication between devices, data is corrupted, etc.), a user can
launch a debug session from command line interface and find out why link is not functioning properly. To launch a
debugging session, a user should stop modbus-master process and run modbus-master command with respective
flags as shown above.

–rtu Show RTU messages
-e [–redis] Show redis debug information
-R [–readyfile] Ready notification file

WCC Lite can act as one (or several) of slave devices in a communication line. This can be used to transmit data to
SCADA systems or other RTU devices. It can reply to a messages from Modbus Master with matching device and
register addresses.

To use Modbus Slave in WCC Lite, it has to be configured via an Excel configuration. This configuration contains two
Excel sheets where parameters have to be filled in - Devices and Signals

Parameter Type Description
Required Default

Value
(when not
specified)

Range

TCP RTU/A
SCII Min Max

name string User-friendly name for a device Yes Yes

description string Description of a device No No

device_alias string Alphanumeric string to identify a
device Yes Yes unknown

enable boolean Enabling/disabling of a device No No 1 0 1

protocol string Protocol to be used Yes Yes Modbus serial Slave, Modbus
TCP Slave

host string
Space separated host IP
addresses of
master device

Yes -

port integer TCP port to listen for incoming
connections Yes -

bind_address string
IP address of network adapter
used to connect to slave device
(Default: ”0.0.0.0”)

No No 0.0.0.0

keep_alive_timeout integer
Minimum time a connection can
be idle without being closed in
milliseconds

No No 60

mode string

Choosing between RTU (”rtu”),
ASCII
(”ascii”) and TCP(”tcp”) modes.
ASCII
is the same as RTU, but with
ASCII
symbols.

No No
TCP (for
TCP)
RTU (for
Serial)

rtu, ascii, tcp

device string Communication port
(”PORT1”/”PORT2”) - Yes PORT1 PORT2

baudrate integer Communication speed, baud/s - Yes 9600
300, 600, 1200, 2400, 4800,
9600, 19200, 38400, 57600,
115200

databits integer Data bit count for communication - Yes 8 6 9

stopbits integer Stop bit count for communication - Yes 1 1 2

parity string Communication parity option - Yes none none, even, odd

13.3 Modbus Slave

Configuring datapoints

If TCP/IP is used as a trasmission medium, only devices with IPs predefined in host column are allowed to
connect. All other connections are rejected

Modbus Slave parameters for Devices tab

flowcontrol string
Communication device’s flow
control
option.

- No none none

Parameter Type Description
Required Default

Value
(when not
specified)

Range

TCP RTU/A
SCII Min Max

signal_name string User-friendly signal name Yes Yes

device_alias string Alphanumeric string to identify a device Yes Yes

signal_alias string Unique alphanumeric name of the signal to
be Yes used Yes Yes

enable boolean Enabling/disabling an individual signal No No 1 0 1

number_type string
Type of a number (FLOAT, DOUBLE,
DIGITAL, etc.). This defines the size that will
be read.

Yes Yes

log integer Size of this signal’s log in the Event log. No No 0

slave_id integer Address of a slave device Yes Yes

function integer Function number Yes Yes

register_addres
s integer Register address Yes Yes

Modbus slave has an additional signal which can be configured to show communication status. It is used to indicate if
the master device has disconnected from slave (WCC Lite). To configure such signal for Modbus protocol, job_todo and
tag_job_todo fields with string values are required. For Modbus slave required parameters for status signal will be:
signal_name device_alias, signal_alias, number_type, slave_id, function, register_address, job_todo and
tag_job_todo. Job_todo value must be device_status and for tag_job_todo there are 4 variations:
communication_status, device_running, device_error, uknown_error. Each signal has 4 possible values and are based
on the same logic. If signal returns value of 0, it means unknown error has appeared, 1 – device or protocol connection
is on and working properly, 2 – device is off or protocol is disconnected, 3 – error or service is down.

Internally stored values aren’t organised in a register-like order, therefore mapping should be done by the user. This
mapping includes setting an address of the device WCC Lite is simulating as well as function number, register number
and how much 16-bit registers are used to store a value. These values should be set in common_address , function ,
info_address and size columns respectively in the Excel configuration.

To find out how many register should be used for storing a values, how values can have their values swapped, a user
should consult a section number_type .

If configuration for Modbus Slave is set up, handler for protocol will start automatically. If configuration is missing or
contains errors, protocol will not start. It is done intentionally to decrease unnecessary memory usage.

Modbus Slave command line debugging options

modbus-slave

Modbus Slave parameters for Signals tab

Device status signals

Mapping values to registers

If a Modbus master device requests a data from a register that is mapped but doesn’t yet have initial value,
ILLEGAL DATA ADDRESS error code will be returned. The same error code is returned if a requested size of value
is bigger that defined or if register is not configured at all.

Debugging a Modbus Slave application

https://wiki.elseta.com/books/manual/page/182-optional-parameters-for-signals#bkmrk-number_type-field

-h [–help] Display help information
-V [–version] Show version
-d<debug level> Set debugging level
-c [–config] Config path
-r [–raw] Show raw telegram data
-f [–frame] Show frame data
-s [–serial] Show serial port data
–tcp Show tcp packets
–ascii Show ASCII messages
–rtu Show RTU messages
-e [–redis] Show redis debug information
-R [–readyfile] Ready notification file

If Modbus Slave does not work properly (e.g. no communication between devices, data is corrupted, etc.), a user
can launch a debug session from command line interface and find out why link is not functioning properly.

To launch a debugging session, a user should stop modbus-slave process and run modbus-slave command with
respective flags as shown above.

	13 Modbus
	13.1 Introduction
	13.2 Modbus Master
	Configuring datapoints
	Modbus Master parameters for Devices tab
	Modbus Master parameters for Signals tab
	Device status signals

	Debugging a Modbus Master application

	13.3 Modbus Slave
	Configuring datapoints
	Modbus Slave parameters for Devices tab
	Modbus Slave parameters for Signals tab
	Device status signals

	Mapping values to registers
	Debugging a Modbus Slave application

