
Lua is a powerful, efficient, lightweight scripting language. It has been used in many industrial applications with an
emphasis on embedded systems. Lua has a deserved reputation for performance. To claim to be "as fast as Lua" is an
aspiration of other scripting languages. Several benchmarks show Lua as the fastest language in the realm of
interpreted scripting languages. Lua is fast not only in fine-tuned benchmark programs, but in real life too. Substantial
fractions of large applications have been written in Lua.

In WCC Lite system Lua is used for extending the functionality of excel configuration adding an interface to the
existing signal-linking engine. Provided functions enable to recreate PLC functionality and modify any value with ease.

Lua runner provides 3 execution modes: interval, date, signal, which can be specified in execution_type.

Interval: executes provided script based on provided time interval in execution_parameter. It uses milliseconds,
meaning if 500 value is provided, then the script is executed every 500 milliseconds.
Date: schedules a script execution based on provided cron expression in execution_parameter. The format consists
of 6-7 fields separated by space.

Name Required Allowed Values Allowed Special Characters

Seconds Y 0-59 , - * /

Minutes Y 0-59 , - * /

Hours Y 0-23 , - * /

Day of month Y 1-31 , - * /

Month Y 0-11 or JAN-DEC , - * /

Day of week Y 1-7 or SUN-SAT , - * /

Year N empty or 1970-2099 , - * /

For example, 0 0 * * * * will execute the script at every hour mark. There are a lot of online cron expression parsers or
generators to convert this expression to a more understandable sentence. https://crontab.cronhub.io/

Signal: uses source signal provided in signal sheet to trigger script execution. Another non excel signal can be
provided in execution_parameter attribute. As an example, if a signal in excel configuration has an attribute
execute with value 1, and a source signal specified in source_device_alias, source_signal_alias, then if a value
event happens to the source signal, the script will be executed. More than one signal can have execute attribute.

To interface with existing signals and extend the available lua functions some extra functions were added:

get, set, publish, and subscribe functions are used to get the values configured in excel configuration or to
communicate with other scripts.
A signal value in wcc lite system consists of 3 sub-values: value, time, and attributes. get function is used to get all
the sub-values or get_value, get_time and get_attributes to get only one of the sub-values. To execute this
command, a signal has to be specified: get(signal.value1). A signal is specified by a string
"tag/<device_alias>/<signal_alias>" or a table that is created from iterator parameter in excel configuration. For
example:

Function publish is used to send a value to other signals:

21 Lua script runner
Introduction

Overview
Execution types:

Additional functions:

-- the default iterator is signals, that means there is a table 'signals' generated from excel signals
signals["tag1"] = "tag/device_alias/tag1" -- tag1 would be the signal_alias
-- to get the value of this signal:
local variable = get_value(signals.tag1)
local variable = get_value(signals["tag1"]) -- both methods are viable
-- and the 'variable' will have the value of tag1 signal
-- get function will return the value of source signal that was sent to this signal

publish(signals.tag2, 90) -- this function will send 90 with current time to the signal tag2
publish(signals.tag2, {value = 60, time = "123456789", attributes = "iv,nt,sb"})

https://crontab.cronhub.io/

To provide different time and attributes to the publish function, a table of these 3 values has to be specified, time can
be omitted. An example of the table is returned by the get function.

These two functions will be used the most, others are included for communication between different scripts in a more
complex system.

set function set the value of the signal, without sending an event of change:

Function subscribe is used to wait (blocks code execution while waiting) for a value and get it. It is used the same as
get function (does not have separate functions for sub-values). It should only be used if more complex communication
between scripts is needed.

Function save saves the specified value to flash memory for use after reboot. The same value sub-values apply to
execution.

Function time_ms returns current time in milliseconds and in UNIX format.

Function sleep is the same as Lua socket module function socket.sleep.

Additional functions for debug information are: emerg, alert, crit, err, warning, notice, info, debug . These
functions correspond to levels from 0 to 7. The default level is 4, which means that the function from emerg to
warning will be printed to syslog, unless specified differently in file /etc/lua-runner.conf.

The web interface is used to see what scripts are running, if there is a script provided, to stop/start a script. After
configuring a device with lua runner as protocol, the script runner protocol hub tab will be populated with devices that
where configured:

-- above command is used when other sub values are needed to be specified
-- and the signal-linker will send it to another signal
-- if this signal was specified as source signal in another protocol signal

set(signal.tag3, 50) -- this command will set the value of the signal tag3
-- because it is a set function, other protocols will not see a change
-- and the value will not be accessible
-- it is only used with non excel signals
set("signal1", 60) -- now the signal1 tag will have a value
-- and another script will be able to use get to get this value
local value1 = get_value("signal1") -- value1 will be equal to 60 with current time

These functions are equivalent to REDIS functions.

save(signals.tag1, 50) -- this will save a value to tag1
-- after reboot or script runner process restart this value will be set to tag1
-- and will be accesible with get(signals.tag1)
-- this function will not set the value tag1 to 50

local t = time_ms()
-- t will be equal to 1665389490555
-- if the date right now is Mon Oct 10 2022 08:11:30:555 GMT+0000

sleep(1) -- will wait for 1 second

emerg("log message 0")
alert("log message 1")
crit("log message 2")
err("log message 3")
warning("log message 4")
notice("log message 5")
info("log message 6")
debug("log message 7")

These functions will require significant cpu resources even if the message log level is higher than default and no
message is printed.

Web interface

Then by pressing the Upload Script button, a script will be available to be selected (the name of the script will be
changed to match device_alias). When uploaded the script will not be started automatically, pressing start will be
necessary.

After pressing start, the script will be started, if there are errors it will try to start, but after a few attempts, it will stop.

Clear all saved values button is used to clear the memory of saved values. Having a lot of values being saved is not

https://wiki.elseta.com/uploads/images/gallery/2022-10/image-1665406373895.png
https://wiki.elseta.com/uploads/images/gallery/2022-10/image-1665408922682.png
https://wiki.elseta.com/uploads/images/gallery/2022-10/image-1665409121771.png

healthy for the SD card and faults can happen. Also, script runner process initialization is slowed down when a lot of
saved values are used.

Parameter Type Description Required
Default value

(when not
specified)

Range

Min Max

name string User-​friendly
name for a device Yes

device_alias string
Alphanumeric
string to identify a
device

Yes

description string Description of a
device No

enable boolean Enabling/disabling
of a device No 1 0 1

protocol string Protocol to be
used Yes lua runner

execution_type string Execution type to
be used Yes interval, date, signal

execution_parame
ter int, string Parameters for

execution Yes
interval time in ms,
date in cron format,
additional signal

queue_max int
Maximum
execution queue
jobs

No 3 0 to disable queue

error_limit int Error limit before
stoping No 3 0 to disable

keep_alive_time_
ms int Time to keep the

script alive in ms No 600000 0 to disable

Parameter Type Description Required
Default value

(when not
specified)

Range

Min Max

signal_name string User-​friendly
name for a signal Yes

device_alias string
Alphanumeric
string to identify a
device

Yes Must match device_alias in the device
sheet

signal_alias string
Unique
alphanumeric
name of the signal
to be Yes used

Yes

iterator string
Lua table name to
which signal is
added

No signals

Configuration
Device configuration parameters:

Signals configuration parameters:

default_value string Default value for a
signal No

execute int

Enable signal
update trigger to
execute script
(only available for
signal execution
mode)

No 0 0 1

If configuration for script runner is set up, the process will start automatically. If configuration/script is missing or
contains errors, process will not start. It is done intentionally decrease unnecessary memory usage.

Script runner runs a service called lua-runner. If the script doesn't start or does not work correctly, a user can launch
a debug session from command line interface and find out what problem is causing it to not work. To launch a
debugging session, a user should stop the script from web interface and run lua-runner command with respective
flags and configuration as in the table given below.

Procedure for lua-runner service debugging:

Step 1: Script must be stopped through web interface.
Step 2: After script is stopped it must be started with the preferred configuration file (JSON files found in
/etc/lua-runner, and the name corresponds to device_alias) and a debug level 7:
lua-runner ​-c /etc/lua-runner/device_alias.json ​-d7 -e.
Step 3: Once the problem is diagnosed normal operations can be resumed by starting the script through web
interface.

Revision #20
Created 7 October 2022 11:05:26 by Lukas Taroza
Updated 2 March 2023 08:46:08 by Lukas Taroza

Math (math_expression, add, multiply,) for source signals will not work for lua-runner device

Debugging the script runner service

	21 Lua script runner
	Introduction
	Overview
	Execution types:
	Additional functions:
	Web interface

	Configuration
	Device configuration parameters:
	Signals configuration parameters:

	Debugging the script runner service

