
Configuration Example With Default and Saved Values (Modbus TCP, IEC104)
Signal Delay with Lua
Mathematical Operations With Lua (FW version 1.7)
Cronjob example
Execution_signal example

Lua runner examples



An Excel configuration for WCC Lite is needed to control signals with a Lua script. In this case, three devices are
required: one for Modbus TCP Master, one for IEC104-slave and one for Lua runner. Configuration example:

To connect slave and master devices, the master's IP address and the slave's host addresses have to be specified.
Modbus IP address will be the address of Wi-Fi to which the computer is connected (this can be checked on the
terminal window with the command ipconfig), and the host address for IEC104 slave protocol will be the IP address to
which WCC Lite is connected. To reach the device via these addresses, WCC Lite has to be connected to the internet.

When creating an Excel configuration with Lua, there is an option default value for the signal. This value will be set to
the signal right after uploading the configuration, or if the script does not return any saved values.

Signals sheet:

As it is seen from example values, such as min_value and max_value, can be added to determine the limits of a
signal. This way command signal will only return results which are within this range. Otherwise command value will
have negative cot with invalid, non topical or overflow attributes and new value will not be sent to result signals. As
configured, until command value is sent default value will be represented for Lua command signal. For saved values to
be represented a Lua script is needed. 

Lua script example for this configuration is shown below:

Configuration Example With
Default and Saved Values
(Modbus TCP, IEC104)
Excel configuration

Lua script 

local saved = get(signals.result) --getting result signal which is equated to new variable 'saved'
local command = get(signals.command) --getting command signal which is equated to new variable 'command'

--get() function returns nill if there is no valid value

if not command then --if command is not nill
    if saved then --if signal is not nill
        publish(signals.result, saved.value) --this value is published to result signals and saved value
    end
    return 0
end 

local time_diff = time_ms() - tonumber(command.time) --compares command time and real time
local is_command = time_diff < 30000 and time_diff > -30000 --if command time differs from
--real time more than 30s it will not be executed 

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691501602369.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692706261790.png


First Excel configuration needs to be uploaded to WCC Lite:

After uploading configuration default value will be shown:

After uploading configuration no errors should appear and all signal should be represented on the web. To upload Lua
script go to Script-Runner, select upload script and then start:

if string.find(command.attributes, "nt") or string.find(command.attributes, 
    "iv") or string.find(command.attributes, "ov") then
  --searching if signal has negative attributes 
    if is_command then --if command execution time is not exceeding the limits then
        command.attributes = "cot=7,cotn" --equates negative cot values to response signal attributes
        publish(signals.command, command) -- and publishes value to command signals and value
        if saved then --if there is saved value then
            publish(signals.result, saved.value) --restores saved value to result signals
        end
        return 0
    end
else
    if is_command then
        command.attributes = "cot=7" 
        publish(signals.command, command)   --in this cycle command value is being returned as well as
    --cot7 and cot10 values in case given signal is command and has no negative attributes
        command.attributes = "cot=10"
        publish(signals.command, command) --publishes response to the command
        save(signals.result, command.value) --command value is being saved to result signal
    end
    publish(signals.result, command.value) --in this row command value is being published to result signals
end

Uploading configuration and Lua script to WCC Lite

https://wiki.elseta.com/uploads/images/gallery/2022-12/image-1671526558865.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692712552551.png


In order to connect to WCC Lite via IEC104 protocol, select Master(Client) mode on Vinci:

Check Settings tab to match excel configuration:

Connecting master and slave via Vinci software
Connecting IEC104 slave 

https://wiki.elseta.com/uploads/images/gallery/2022-12/image-1671526957681.png
https://wiki.elseta.com/uploads/images/gallery/2022-12/image-1671528870849.png
https://wiki.elseta.com/uploads/images/gallery/2022-12/image-1671528969827.png


Specify IP address which should match the one in Excel configuration.

To connect ModbusTCP Master, select Slave (Server) mode on Vinci:

Check address to match id in Excel configuration:

Match the IP address given in Excel configuration as well.

Start both master and slave simulations on Vinci. Check if both protocols are connected to WCC Lite on the web tab
Protocol Connections:

To execute commands, open Vinci program with IEC104 master running. Here, go to System tab and fill in required
fields such as IOA and select data type indicated in Excel configuration. First, try sending value that is outside the set
range:

After selecting execute this value will not be showed on the web and positive cot6 and negative cot7 values will be
seen on Vinci IEC104 simulation window. Positive cot6 indicates command activation and negative cot7 means that
command activation confirmation was denied. The command signal value will not be represented as result signals,
because it is determined in the script, that signals with negative attributes will not be published. 

Connecting ModbusTCP master:

Executing commands

https://wiki.elseta.com/uploads/images/gallery/2022-12/image-1671530055509.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691399259812.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692703562023.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692952309993.png


Now specify value which will be sent as a result and is within the given range.  

Positive cot7 and cot10 values will be seen on the Vinci IEC104 simulation window:

This value will also be represented on Modbus TCP master Vinci simulation window:

To show what happens if the value is not within determined range after the correct value has been sent before, try
executing command with smaller or larger value specified:

Again, positive cot6 and negative cot7 values is seen on Vinci window.

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692957902714.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691399941593.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691400062905.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691400136020.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691400179325.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691400197027.png


As seen on WCC Lite web window, command signals have negative attributes and result signals have the same value
as before, because it was saved by Lua script. This example shows that Lua runner can be used to save certain values
to signal. For example after the restart saved value could be seen on command signal to determine minimum or
maximum value, last value or typical value. This solution could be useful for protecting important data even after
reboot or connection faults. 

Configuration --> Download

Lua script --> Download

https://wiki.elseta.com/attachments/552
https://wiki.elseta.com/attachments/542


For delaying the response of command execution, the Lua runner could be used as one of the solutions. In this
example, IEC104 and Modbus TCP are used. IEC104 protocol sends the command to Modbus and Lua signals, and the
results are represented as two separate signals. To create an Excel configuration for WCC Lite, in this case device
sheet should look like this:

In the fields marked red, for Modbus TCP, enter the IP address of the Wi-Fi connected to a computer, and for IEC104,
enter the IP address of WCC Lite. Map the signals as shown below:

IEC104 SCADA will send a command, which will then go to the Lua signal. Lua signal will send the response back to the
IEC104 SCADA and Modbus TCP result signal. 

For delaying signal response, a Lua script could be written in many ways, however, the simplest and effective one is to
determine a wait time before publishing signal values to result signals. So in this case Lua script will look like this:

Signal Delay with Lua

local saved = get(signals.result)--getting result signal which is equated to new variable 'saved'
local command = get(signals.command) --getting command signal which is equated to new variable 'command'

if not command then
    if saved then
        publish(signals.result, saved.value)--this value is published to result signals and saved value
    end
    return 0
end

if string.find(command.attributes, "nt") or string.find(command.attributes, "iv") or 
string.find(command.attributes, "ov") then
   --searching if signal has negative attributes 
  if command then
       command.attributes = "cot=7,cotn"--equates negative cot values to response signal attributes
        publish(signals.command, command)-- and publishes value to command signals and value
        if saved then
            publish(signals.result, saved.value)--restores saved value to result signals
        end
        return 0
    end   
else
  if command then
        command.attributes = "cot=7"
        publish(signals.command, command)--in this cycle command value is being returned as well as
  --cot7 and cot10 values in case given signal is command type and has no negative attributes
        command.attributes = "cot=10"
        publish(signals.command, command) --publishes response to the command
        save(signals.result, command.value)--command value is being saved to result signal
    end
    local sleepTime = 30 
    sleep(sleepTime) --before publishing values to result signals script waits 30s
    publish(signals.result, command.value)--in this row values are being published to result signals

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691574338163.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692965126845.png


After entering values to empty Excel configuration fields, upload the configuration to WCC Lite (it should upload without
any errors):

Upload the Lua script to the script runner and press start. After this, Status should show Running, and the script
process number will appear.

Open Vinci as an IEC104 master, enter the IP address of WCC Lite and start communication. Then open another Vinci
window and connect Modbus TCP master – select Modbus TCP slave in Vinci and enter the same IP address as set in
the Excel configuration for the Modbus device. With both communications running, check Protocol connections on
the WCC Lite web interface, it should show connected. From the IEC104 Vinci window, go to the System tab. Select
command determined in the Excel configuration (50), IOA (1) and value (eg, 2). 

end

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691483399099.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691650520213.png


Execute the command and check Imported signals:

After 30s the result signals will now have the same value:

Signal delay could be used as a tool to synchronise signals so all the values are received at the same time. It can also
be used to schedule commands or tasks when a delay is required. Since Lua is one of the fastest programming
languages, it is the most effective instrument to be used in such matters.

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691656106450.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691656557970.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691657076669.png


Configuration --> Download

Lua script --> Download

https://wiki.elseta.com/attachments/553
https://wiki.elseta.com/attachments/554


Mathematical operations can be applied to Lua signals as in any other protocol. This can be done by configuring WCC
Lite according to the solution needed. To create an example which tests multiple mathematical operations, an Excel
configuration and a Lua script are required. The device sheet should look similar to this:

Each Lua device is created to send result values to Modbus TCP signals with different mathematical functions applied.
This way, the same Lua script can be reused and is more optimal since the signal alias for each device can stay the
same. There are many other solutions, but this one allows us to observe results more clearly.

In the field  "ip" for Modbus TCP master, enter the IP address of the Wi-Fi connection for the computer in use. In the
field "host" for IEC104 slave protocol, enter the IP address of the WCC Lite device. 

Signals for these devices should be mapped, for example, to this:

Each Lua device has command and result signals. Command received from the IEC104 protocol is sent to the Lua
command signal, and then this signal sends back a response for the IEC104 protocol. If the response does not have

Mathematical Operations With Lua
(FW version 1.7)

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691759419298.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691761247612.png


negative cot attributes, the value is then sent to the Lua result signal, which sends the value to the Modbus TCP result
signal. Mathematical operations are applied to IEC104 protocol signals since it is the one sending the commands.

As mentioned before Lua script for each Lua device is going to be unchanged and should look like this:

Upload Excel configuration to WCC Lite:

After uploading the configuration, no errors should appear, and all signals should be represented on the web. To
upload a Lua script, go to Script-Runner, select upload script and then start (for each Lua device):

local saved = get(signals.result) --getting result signal which is equated to new variable 'saved'
local command = get(signals.command) --getting command signal which is equated to new variable 'command'

--get() function returns nill if there is no valid value

if not command then --if command is not nill
    if saved then --if signal is not nill
        publish(signals.result, saved.value) --this value is published to result signals and saved value
    end
    return 0
end 

local time_diff = time_ms() - tonumber(command.time) --compares command time and real time
local is_command = time_diff < 30000 and time_diff > -30000 --if command time differs from
--real time more than 30s it will not be executed 

if string.find(command.attributes, "nt") or string.find(command.attributes, 
    "iv") or string.find(command.attributes, "ov") then
  --searching if signal has negative attributes 
    if is_command then --if command execution time is not exceeding the limits then
        command.attributes = "cot=7,cotn" --equates negative cot values to response signal attributes
        publish(signals.command, command) -- and publishes value to command signals and value
        if saved then --if there is saved value then
            publish(signals.result, saved.value) --restores saved value to result signals
        end
        return 0
    end
else
    if is_command then
        command.attributes = "cot=7" 
        publish(signals.command, command)   --in this cycle command value is being returned as well as
    --cot7 and cot10 values in case given signal is command and has no negative attributes
        command.attributes = "cot=10"
        publish(signals.command, command) --publishes response to the command
        save(signals.result, command.value) --command value is being saved to result signal
    end
    publish(signals.result, command.value) --in this row command value is being published to result signals
end

https://wiki.elseta.com/uploads/images/gallery/2022-12/image-1671526558865.png


Open Vinci as an IEC104 master, enter the IP address of WCC Lite and start communication. Then open another Vinci
window and connect Modbus TCP master – select Modbus TCP slave in Vinci and enter the same IP address as set in
the Excel configuration for the Modbus device. With both communications running, check Protocol connections on
the WCC Lite web interface, it should show Connected. From the IEC104 Vinci window, go to the System tab. Select
command determined in the Excel configuration (50), IOA (different for each signal) and value. After executing the
command, each signal (IEC104 command, Lua command, Lua result and Modbus result) will have the same value,
which will now be with math applied. For example, a command with IOA=1 and value 1 is being executed. In Excel
configuration for this signal, add a column has a value of 5, which means that this value is going to be added to the
value sent and the result will be 6.

There can be multiple mathematical operations for one signal. For example, add, multiply, bit select, etc. If that is the
case, math will be applied in typical order (eg, first bit select, then multiply, then add).  A more detailed explanation
about mathematical operations in Excel configuration can be found here: Optional parameters for signals.

A user can also apply a mathematical condition for the signal value. For example, minimum or maximum value,
threshold, suppression time for specific value, etc. Minimum and maximum values can be applied to set the range of
the signal; if the value is smaller or larger signal state will show invalid or overflow. Thresholds can be used in many
ways. It can be a specific value or a percentage. If the signal value passes the set threshold, it will be represented in
the imported signals window. Threshold works by comparing the old value with the new value and then applying the
condition of either representing the value or suppressing it, depending on the value change. Suppression value and
suppression time are best used together because suppression time determines how long the specific value should be
suppressed. There could be multiple values set for suppression. In Excel configuration, those values should be
separated by a comma. 

Mathematical operations combined with a Lua script are useful for many cases. They can be used for filtering data,
converting units, applying specific mathematical logic or other solutions. 

Configuration --> Download

Lua script --> Download

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691650520213.png
https://wiki.elseta.com/books/manual163/page/182-optional-parameters-for-signals
https://wiki.elseta.com/attachments/631
https://wiki.elseta.com/attachments/548


Lua device can be configured using a cron time expression. This way, script execution can be scheduled or executed at
certain times. To create such a solution, the device sheet of the Excel configuration should look like this:

As seen in this configuration, the execution type for the Lua device is date, and the execution parameter is in a cron
time expression. In this case script will be executed every 30 seconds starting from a mm:30 or a mm:00 mark. There
are a lot of online cron expression parsers or generators to convert this expression to a more understandable form:
https://crontab.cronhub.io/.

A Cron expression must have six variables; for instance, the code "0 * * * *" will not suffice because it contains only
five variables. To rectify this, add a "0" to the beginning of the code: "0 0 * * * *". Similarly, the code "0 20-23,0-4,11 * *
*" which is displayed as correct on the website, to achieve the effect of every hour from 08:00 PM to 11:59 PM, 12:00
AM to 04:59 AM, and 11:00 AM, it must be adjusted as follows: "0 0 20-23,0-4,11 * * *".

To complete the Excel configuration, fill out the red fields with the correct parameters. For the "ip" field, enter the IP
address of the Wi-Fi connection that is connected to the computer. This can be checked by entering the command
"ipconfig" in a terminal window. For the "host" field, enter the IP address of the WCC Lite device.

The signals sheet should look similar to this:

IEC104 SCADA will send a command, which will then go to the  Lua signal. Lua signal will send the response back to
the IEC104 SCADA and Modbus TCP result signal. 

The Lua script in this case will be very simple. To show how Lua with cronjob can be used in real life, a calculation for
kilowatts per hour has been added:

To test the functionality of this script, upload the Excel configuration to WCC Lite (it should upload without any errors):

Cronjob example

local kW = tonumber(get_value(signals.command))--function "get_value" will get value from iec104 command
--without any attributes this value is still in string form so funtion "tonumber" will convert it to number
--a new variable is creted which is now equal to command value
value = value or 0 --new variable is created. It has to be equal to itself or to 0 if the script is running
--for the forst time
value = (kW * 30/3600) + value --formula for calculating kilowatts. command value from iec104 is multiplied by 
time. 
--Since the script is being executed every 30s, this time needs to be converted to hours. an old value is being
--added to new value, this way result value that is being published will grow every 30s
publish(signals.result, value)--publishes result to result signals for lua and modbus TCP. 
--Since the script is being executed every 30s, those values will be refreshed every 30s as well

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692192128948.png
https://crontab.cronhub.io/
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692193770966.png


Upload the Lua script to the script runner and press start. After this, Status should show Running, and the script
process number will appear:

Open Vinci as an IEC104 master, enter the IP address of WCC Lite and start communication. Then open another Vinci
window and connect Modbus TCP master – select Modbus TCP slave in Vinci and enter the same IP address as set in
the Excel configuration for the Modbus device. With both communications running, check Protocol connections on
the WCC Lite web interface, it should show connected. From the IEC104 Vinci window, go to the System tab. Select
command determined in the Excel configuration (50), IOA (1) and value (for example 3600).

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1691483399099.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692256160683.png


Execute the command and check Imported signals:

On a 30s mark, result signals will have a calculated value:

After another 30 seconds, a new value will be added to the old value, and the result signals will be updated
accordingly:

Cronjob with Lua can be used mainly to schedule tasks. It can also be used as a way to filter, monitor or control the
data. As seen in this example, a Lua script can help calculate certain parameters, which then can be sorted using a
cron time expression. 

Configuration --> Download

Lua script --> Download

https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692256267495.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692256755579.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692256964491.png
https://wiki.elseta.com/uploads/images/gallery/2023-08/image-1692257097082.png
https://wiki.elseta.com/attachments/550
https://wiki.elseta.com/attachments/549


The execution_signal  parameter returns information about the specific signal that triggered execution. If there are
multiple possible source signals, it identifies the one that initiated the execution. In this example, the Modbus RTU
protocol is used. Configuration of devices:

Execution_signal  should always be "signal" when execution_signal is used. PORT2 is used to connect IOMod 8DI8DO to
WCC Lite via RS-485. IOMod signals configuration in this case:

In this case, IOMod's input signals are used, but other signals can be used depending on needs. Map the signals as
shown below:

The first Lua signal is executing the first input signal, while the second Lua signal is executing the second input signal.
The results signal is used to store information about the executed signal.

A Lua script can be written in various ways using the execution_signal  parameter. However, in this example, a simple
Lua script is used to retrieve the signal_alias  of the executing signal by accessing execution_signal.tag.signal_alias :

This is just one example of execution_signal  usage. It can retrieve different information about executing a signal
using:

execution_signal.tag.device_alias  - retrieves device_alias
execution_signal.tag.signal_alias  - retrieves signal_alias
execution_signal.value.value  - retrieves the value of the executing signal (for example, 1 or 0)
execution_signal.value.time  - retrieves system time in milliseconds (UNIX timestamp)
execution_signal.value.attributes  - retrieves attributes (for example, iv, nt, sb)

Upload the configuration to WCC Lite (it should upload without any errors):

Execution_signal example

local DI = execution_signal.tag.signal_alias

if DI == "DI1_lua" then
    publish(signals.results, 1)
elseif DI == "DI2_lua" then
    publish(signals.results, 2)
end

https://wiki.elseta.com/uploads/images/gallery/2025-02/image-1740645086014.png
https://wiki.elseta.com/uploads/images/gallery/2025-02/image-1740645367520.png
https://wiki.elseta.com/uploads/images/gallery/2025-02/image-1740646177825.png


Upload the Lua script to the script runner and press start. After this, Status should show Running, and the script
process number will appear.

After activating the first input, in the WCC Lite web's imported signals tab, results should display 1:

https://wiki.elseta.com/uploads/images/gallery/2025-02/image-1740649584122.png
https://wiki.elseta.com/uploads/images/gallery/2025-02/image-1740649663116.png


After activating the second input, in the WCC Lite web's imported signals tab, results should display 2:

Configuration --> Download

Lua script --> Download

https://wiki.elseta.com/uploads/images/gallery/2025-02/image-1740650410927.png
https://wiki.elseta.com/uploads/images/gallery/2025-02/image-1740650545463.png
https://wiki.elseta.com/attachments/644
https://wiki.elseta.com/attachments/645

	Lua runner examples
	Configuration Example With Default and Saved Values (Modbus TCP, IEC104)
	Excel configuration
	Lua script
	Uploading configuration and Lua script to WCC Lite
	Connecting master and slave via Vinci software
	Connecting IEC104 slave
	Connecting ModbusTCP master:

	Executing commands

	Signal Delay with Lua
	Mathematical Operations With Lua (FW version 1.7)
	Cronjob example
	Execution_signal example

