
How to use excel configuration. What are functions supported.

Device configuration
Signals sheet
Uploading configuration
Mathematical functions

Excel configuration

Protocol HUB uses configuration in excel file format. Each sheet represents a specific part of configuration:

Devices contains device list and protocol related configuration.
Signals contains a list of signals and their options.

First line on each sheet is a header row that contains parameter name for each column. Header order determines
parameter names for each following row. Every line after the header is a new entry. An empty row is interpreted as
end of sheet. Any rows after empty row are discarded.

Devices sheet contains all devices to be configured on gateway. Each row represents one device and its settings.
Following options are required for each device:

name - Name of the device. Used for representation only.
description - A short description for the device. Used for representation only.
device_alias - A unique short name for the device. It is used for linking signals to a device.

protocol - Protocol type to use on device. Exact values of protocols are writen in every protocol
documentation. Please look into range of supported protocols:

IEC 61850 MMS:

 – IEC 61850 Client (since FW 1.5.0)

 – IEC 61850 Server (since FW 1.5.0)

IEC 60870-5:

 – IEC 60870-5-101 master

 – IEC 60870-5-101 slave

 – IEC 60870-5-103 master

 – IEC 60870-5-104 master

 - IEC 60870-5-104 slave

DNP 3.0 Serial/LAN/WAN:

 - DNP3 Master

 – DNP3 Slave

Modbus Serial/TCP:

 - Modbus RTU/ASCII

 – Modbus TCP

Metering protocols:

 - DLMS/COSEM (since FW 1.3.0)

 – IEC 62056-21 (since FW 1.2.13)

 – MBus Serial

 – MBus TCP

 – Elgama (Meters based on IEC 62056-21 / 31 protocols)

Industrial IOT protocols:

 - MQTT

Device configuration

Devices sheet

Alias can only contain alphanumeric characters and dashes (- and _). Alias must be unique for each device.

- RESTful API

Specific protocols:

– Aurora (ABB PV inverters protocol)

– PowerOne (ABB PV inverters protocol)

– SMA Net (SMA PV inverters protocol)

– Kaco (Kaco PV inverters protocol)

– Ginlong (Ginlong PV inverters protocol)

– Solplus (Solutronic AG PV inverters protocol)

– ComLynx (Danfoss PV inverters protocol)

– Delta (Delta PV inverters protocol)

– Windlog (Wind sensors from RainWise Inc.)

– Vestas (Wind turbines protocol)

– Internal data

– VBus.

enable - Flag to enable or disable device on system. Can contain values 0 or 1.
event_history_size - Maximum number of signal events to save on device for later review. Older records will
be erased. This feature is only available on cloud firmware.

Required for any protocol that uses serial line communication.

device - Serial port for communication (PORT1/PORT2)
baudrate - Serial port speed. Valid values:

– 300

– 600

– 1200

– 2400

– 4800

– 9600

– 19200

– 38400

– 57600

– 115200

databits - Number of data bits (6-9)
stopbits - Number of stop bits (1-2)
parity - Parity mode (none/even/odd)
flowcontrol - Flow control method (none/hardware/software)

Settings for any protocol that uses communication over TCP/IP. Note that all TLS certificates and keys are stored in
single folder therefore only name and not the path should be filled in respective fields.

Although device name rules aren’t strictly enforced, it is highly advised to give a unique name for every new
device. Identical device names might introduce confusion while searching for signal in Imported Signals tab.

Optional settings

Serial port settings

TCP/IP settings

ip - IP address for master protocol to connect to;
bind_address - one of local IP addresses to bind the server to. Connections through other network devices will
be ignored;
host - space separated host IP addresses of master devices;
port - TCP port to listen for incoming connections;
tls_local_certificate - name of local TLS certificate;
tls_peer_certificate - name of certificate authority (CA) TLS certificate;
tls_private_key - name of private key for making TLS connections.

TLS fields are only supported for IEC 61850 Client and Server, IEC-60870-5-104 Slave and DNP3 Master and
Slave, MQTT.

Signals sheet contains all signals linked to devices. Each signal is defined in single row. Signal list can be split in
multiple sheets. Each sheet name may start as Signals.

These attributes are mandatory for every configured signal. Every Excel configuration should have specified them in
first row of Signals sheet:

signal_name - Name of the signal. Used for repesentation only.
device_alias - Alias of a device defined in Devices sheet. Signal is linked to a matching device.
signal_alias - A unique short name for the signal. It is used for linking signal to other signals. Alias can only
contain alphanumeric characters and dashes (- and _). Device and signal alias combination must be unique.

Optional attributes are required depending on protocol in use and they can be used to extend protocol functionality:

source_device_alias - Alias of a source device defined in Devices sheet. If a user intends to use several
signals and combine them via mathematical or logical function, every alias should be seperated by a newline
symbol (in the same cell). An operation used must also be defined in an operation column.
source_signal_alias - Alias of a source signal defined in Signals sheet. If a user intends to use several signals
and combine them via mathematical or logical function, every alias should be seperated by a newline symbol
(in the same cell). An operation used must also be defined in an operation column. Every source_signal_alias
should be posted in the same line as its respective source_device_alias . Aliases can only contain
alphanumeric characters and dashes (- and _). Device and signal alias combination must be unique.
enable - Flag to enable or disable signal on system. Can contain values 0 or 1.
tag_type - Tag type. Simple signals are polled from device. Virtual signals are computed
internally.
off_message - Message to display when single point or double point signals are in OFF state.
on_message - Message to display when single point or double point signals are in ON state.
units - Signal value measurements units.
multiply - Multiply value by this number.
add - Add this number to a value.
sum_signals - Define other signal values to add to current signal. This field uses following
format: dev_alias/tag_alias. Multiple signals can be defines usign commas.
min_value - Minimum expected value. If result is lower than this value, invalid flag is raised.
max_value - Maximum expected value. If result is higher than this value, overflow flag is raised.
absolute_threshold - Absolute threshold level.
integral_threshold - Integral threshold level.
integral_threshold_interval - Integral threshold addition interval in milliseconds.
threshold_units - Units used in threshold level fields (percent/real).
log_size - Maximum number of records for this tag to keep in storage for CloudIndustries logging.
suppression_values - Space separated numeric values to be used in suppression.
suppression_time_ms - Suppression time in milliseconds.
operation - Mathematical or logical operation to be used for signals defined in source_signal_alias column.
Following mathematical operations for source signal values can be used: avg (average of all values), min
(lowest value), max (highest value), median (median value) and sum (all values accumulated to a single
number). Logical operations, intended for unsigned integers only, are or and and operations.
bit_select - selecting an individual bit of an integer number; bit numeration starts from zero.
math_expression - a mathematical expression for signal value to be evaluated against. Explained in detail in
Mathematical expressions document.

Picture. Result of using an absolute threshold:

Signals sheet

Required attributes

Optional attributes

Picture. Result of using an integral threshold:

A value generated by some protocol usually has to be recalculated in one way or another. This might mean changing
the value of an argument as well as adding flags needed for other protocols to correctly interpret results. As
recalculation is a sequential process, some actions are done before others. The sequence of operations done to a value
is as follows:

Edition of attributes. Attributes for further interpretation are added. This might, for example, include flag to
show that a signal resembles an answer to a command;
Mathematical calculations. multiply, add, bit_select and math_expression columns are evaluated here;
Usage of last value. Decision if last value for a signal should be used if a new value of a signal is not a
number (NaN) or contains a non-topical (NT) flag;
Limiting of values. If a value exceeds a lower or higher configured limit, value is approximated not be lower
(or higher) than the limit. An additional invalid (IV) or overflow (OV) flag is added as frequently used in IEC-
60870-5 protocols;
Suppresion of values. As electrical circuits can be noisy, protocols may generate multiple values in a short
amount of time. What is more, some values are considered as intermediary and ideally should not be sent to
SCADA unless they stay in the same state for some amount of time. suppression_values and
suppression_time_ms are used to configure this functionality;

• Treshold checking. If a new signal doesn’t cross a threshold target value, value is supressed and not used in further
stages. absolute_threshold, integral_threshold, integral_threshold_interval, threshold_units columns are used to
configure this functionality.

This field is required for some protocols to determine a method to retrieve a signal value from hexadecimal form.
Available values:

• FLOAT - 32-bit single precision floating point value according to IEEE 754 standard
• DOUBLE - 64-bit double precision floating point value according to IEEE 754 standard • DIGITAL - 1-bit boolean value
• UNSIGNED8 - 8-bit unsigned integer (0 - 255)

Signal recalculation operation priority

Not all of the elements in this sequence have to configured, missing operation are skipped and values are fed to
a further stage of signal recalculation.

number_type field

https://wiki.elseta.com/uploads/images/gallery/2020-10/image-1601977355078.png

• SIGNED8 - 8-bit signed integer (-128 - 127)
• UNSIGNED16 - 16-bit unsigned integer (0 - 65535)
• SIGNED16 - 16-bit signed integer (-32768 - 32767)
• UNSIGNED32 - 32-bit unsigned integer (0 - 4294967295)
• SIGNED32 - 32-bit signed integer (-2147483648 - 2147483647)
• UNSIGNED64 - 64-bit unsigned integer (0 - 18446744073709551615)
• SIGNED64 - 64-bit signed integer (-9223372036854775808 - 9223372036854775807)

Number conversion uses big endian byte order by default. Converted data will be invalid if byte order on connected
device side is different. In such case byte swap operations can be used. Adding swap prefixes to number type will set
different a byte order while converting values. Following swap operations are available:

SW8 - Swap every pair of bytes (8 bits) (e.g., 0xAABBCCDD is translated to 0xBBAADDCC);
SW16 - Swap every pair of words (16 bits) (e.g., 0xAABBCCDD is translated to 0xCCDDAABB);
SW32 - Swap every pair of two words (32 bits) (e.g., 0x1122334455667788 is translated to
0x5566778811223344);

Table. Example of using different swapping functions:

Address 0 1 2 3 4 5 6 7

Original
number Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

SW8 Byte 1 Byte 0 Byte 3 Byte 2 Byte 5 Byte 4 Byte 7 Byte 6

SW16 Byte 4 Byte 5 Byte 6 Byte 7 Byte 1 Byte 6 Byte 4 Byte 5

SW32 Byte 4 Byte 5 Byte 6 Byte 7 Byte 0 Byte 1 Byte 2 Byte 3

SW8.SW16 Byte 3 Byte 2 Byte 1 Byte 0 Byte 7 Byte 6 Byte 5 Byte 4

SW8.SW32 Byte 4 Byte 4 Byte 7 Byte 6 Byte 1 Byte 0 Byte 3 Byte 2

SW8.SW16.S
W32 Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Add a dot separated prefix to number format to use byte swapping. Multiple swap operations can be used
simultaneously. For example, use SW8.SW16.SIGNED32 to correctly parse a 32-bit signed integer in a little endian format.
Table 35 shows in detail how bytes, words or double words can be swapped and how swapping functions can be
combined to make different swapping patterns. Table shows how byte swap is done for 64-bit (8-byte) numbers. It
doesn’t matter if it is an unsigned/signed integer or double, byte swapping is considered a bit-level operation. If a
number is shorter than 64 bits, the same logic applies, the only difference is unavailability of some swapping
operations (SW32 for 32-bit and smaller numbers). Using such unavailable operation might lead to an undefined
behaviour.

Signals can be linked together to achieve data transfer between several protocols. If a signal source is defined, all
output from that source will be routed to the input of target signal. This way events polled from a modbus device (e.g.,
Modbus, IEC 60870-5, etc.) can be delivered to external station over a different protocol. A signal source is required if a
signal is created on a slave protocol configuration to link events between protocols.

To read a coil state from a Modbus device and transfer it to IEC 60870-5-104 station, following steps may be taken:

1. Create a Modbus master configuration in Devices sheet.
2. Create a IEC 60870-5-104 slave configuration in Devices sheet.
3. Create a signal on master device to read coil status (function 1).
4. Create a signal on slave device with single point type (data_type = 1).
5. Set source_device_alias and source_signal_alias fields on slave device signal to match device_alias and

ignal_alias on master device’s coil signal.

Where Byte x, means bit x position in byte.

Linking signals

Example 1:

https://wiki.elseta.com/books/rtu-usage/page/modbus
https://wiki.elseta.com/books/rtu-usage/chapter/protocols-configuration
https://wiki.elseta.com/books/rtu-usage/page/iec-60870-5-104

To write a coil state to a Modbus device on a command from IEC 60870-5-104 station, following steps may be taken:

1. Follow steps 1-3 from example 1.
2. Create a signal on slave device with single command type (data_type = 45).
3. Set source_device_alias and source_signal_alias fields on master configuration coil signal to match

device_alias and signal_alias on slave device’s command signal. Coil will be written to a value received by a
command.

4. Set source_device_alias and source_signal_alias fields on command signal to match device_alias and
signal_alias on master device’s coil signal. A command termination signal will be reported to the station on
coil write result.

Example 2

For additional information regarding the configuration of IEC 60870-5-101/103/104 protocols, please refer to ”IEC
60780-5-101/103/104 PID interoperability for WCC Lite devices”, accordingly.

https://wiki.elseta.com/books/rtu-usage/page/iec-60870-5-104

As of WCC Lite version v1.4.0 there are three separate ways to import the configuration: import an Excel file via web
interface, generate compressed configuration files and later upload them via web interface; or generate compressed
configuration files and upload them via utility application.

For WCC Lite versions v1.4.0, name of the file is shown in Protocol Hub->Configuration. Older versions only allow
configuration file to be stored to a file called phub.xlsx and later downloaded with a custom-built name reflecting date
of a download. Upgrade process from older version to versions v1.4.0 and above when preserving configuration files
automatically makes the neccessary changes to enable this new functionality of WCC Lite.

Excel file can be imported without any external tools. This option can be used where there is no internet connection or
only minor change has to be applied. This way of importing is not suitable for validation of Excel configuration file.

To upload an Excel file, open Protocol Hub->Configuration screen in Web interface, select Configuration file and press
Import configuration.

To accelerate a task of generating configuration a computer can be used. For this user should download WCC Excel
Utility application. Upon opening an application, user should search for a field called Excel file which lets to choose an
Excel file for which a conversion should be made. Output file should be filled out automatically, however, this value
can be edited.

To make a conversion press Convert. If there are no errors found in the configuration, output file should contain the
generated configuration, otherwise, error message is shown to a user.

This .zip file can be uploaded via Web interface, using the same tools as used for import of an Excel file.

As of WCC Lite version v1.4.0 generated configuration files can be uploaded by a click of button. There are four
parameters (not counting the configuration file itself) that have to be filled in before starting upload:

Hostname: an IP address for device to connect to. This field conforms to hostname rules, therefore, if invalid
value is selected, it is reset to default (192.168.1.1);
Port: a PORT number to which a SSH connection can be made; valid values fall into a range between 1 and
65535; if invalid value is selected, it is reset to default (22);
Username: a username which is used to make a SSH connection; make sure this user has enough rights,
preferably root;
Password: a password of a user used for establishing a SSH connection;

To upload a configuration remotely, press Upload configuration. If no errors occur, you should finally be met with text
output mentioning configuration has been applied. During the course of upload process the aforementioned button is
disabled to prevent spanning multiple concurrent processes.

Uploading configuration

If a user intends to downgrade firmware to versions older than version v1.4.0 from newer versions, he/she must
first download the configuration files and later reupload the configuration after finishing the upgrade process.

Importing an Excel file

Generating configuration is a resource-intensive task. It might take up to 10 minutes depending on
configuration complexity

Supported types of an Excel configuration: .xlsx, .xlsm, .xltm, .xltx

Generating .zip file

Uploading configuration remotely

Configuration can only be uploaded if a port used for SSH connection is open for IP address filled in hostname
entry field. Please check WCC Lite firewall settings in case of connection failure.

Signal value might require some recalculation or signal update prior to being sent. Understandably, existing columns
in Excel configuration like multiply , add , bit_select might not be flexible enough. To overcome these limitations,
symbolic mathematical expressions can be configured to do calculations automatically on every update of a signal.

Optimized for speed
High parsing performance
if-then-else operator with lazy evaluation

Default implementation with many features
25 predefined functions
18 predefined operators

Unit support
Use postfix operators as unit multipliers (3m -> 0.003)

Table. Supported mathematical functions:

Name Argument count Explanation

sin 1 sine function (rad)

cos 1 cosine function (rad)

tan 1 tangent function (rad)

asin 1 arcus sine function (rad)

acos 1 arcus cosine function (rad)

atan 1 arcus tangent function (rad)

sinh 1 hyperbolic sine function

cosh 1 hyperbolic cosine

tanh 1 hyperbolic tangent function

asinh 1 hyperbolic arcus sine function

acosh 1 hyperbolic arcus tangent function

atanh 1 hyperbolic arcus tangent function

log2 1 logarithm to the base 2

log10 1 logarithm to the base 10

log 1 logarithm to base e (2.71828...)

ln 1 logarithm to base e (2.71828...)

exp 1 e raised to the power of x

sqrt 1 square root of a value

sign 1 sign function -1 if x<0; 1 if x>0

rint 1 round to nearest integer

abs 1 absolute value

min variable min of all arguments

max variable max of all arguments

sum variable sum of all arguments

avg variable mean value of all arguments

floor 1 round down to the nearest integer

mod variable modulo operation

Mathematical functions

Feature list:

Mathematical functions

It should be noted that trigonometric functions (excluding hyperbolic functions) only support arguments in
radians. This means that arguments for this function have to be recalculated if angle is defined in degrees.

Table. Supported binary operators:

Operator Description Priority

= assignment -1

» right shift 0

« left shift 0

& bitwise and 0

| bitwise or 0

&& logical and 1

|| logical or 2

<= less or equal 4

>= greater or equal 4

!= not equal 4

== equal 4

> greater than 4

< less than 4

+ addition 5

- subtraction 5

* multiplication 6

/ division 6

^ raise x to the power of y 7

Ternary operators can be used. This expression can be compared to the operator supported by C/C++ language (Table
39). Condition is written before a question (?) sign. If condition is true, result after question sign is selected. If condition
is false, result after colon (:) is selected.

Table. Supported ternary operators

Operator Description Remarks

?: if then else operator C++ style syntax

Users can construct their own equation by using the aforementioned operators and functions. These examples can be
seen in Table below.

Table. Example expressions

Expression Description

value * 0.0001 Multiply the tag by a constant.

value + TagValue(”tag/dev_alias/sig_alias/out”) Add value of tag/dev_alias/sig_alias/out to the current tag.

sin(value) Return a predefined sine function value of the tag.

(value>5)? 1: 0 If the value is greater than 5, the result should be equal to 1, otherwise -
equal to 0

Value recalculation is only triggered on signal change of the preconfigured signal. That means that using other
signals (via TagValue() call) does not trigger value update.

Some mathematical expression cannot be mathematically evaluated in some conditions, for example, square
root cannot be found for negative numbers. As complex numbers are not supported, result is then equal to Not a
Number (NaN). These results are marked with an invalid (IV) flag.

Binary operations

Ternary operations

Examples

Variable called "value" is generated or updated on every signal change and represents the signals being configured. If
another value from tag list is intended to be used, one should use TagValue() function to retrieve its last value.

The inner argument of TagValue() function has to described in a Redis topic structure of WCC Lite. That means that it
has to be constructed in a certain way. Quotes should be used to feed the topic name value, otherwise expression
evaluation will fail.

Every Redis topic name is constructed as tag/[device_alias]/[signal_alias]/[direction]. Prefix tag/ is always used before
the rest of argument. device_alias and signal_alias represent columns in Excel configuration. Direction can have
one of four possible values - rout, out, in, rin; all of which depend on the direction data is sent or acquired device-wise.
For example, "out" keyword marks data sent out of WCC Lite device, whereas "in" direction represents data that WCC
Lite is waiting to receive, for example, commands. Additional "r" before either direction means that data is raw, it is
presented the way it was read by an individual protocol.

In this section you will be shown how "math_expression" and other mathematical functions can be used in case of
common signals. You can download configuration to follow along here. Signals which we are concerned with in this
section are highlighted in green color.

Let us analyze what mathematical functions are configured for the signals. For both second and third signals the same
expression will be used: "value + TagValue(”tag/Master/RHR0/out”)". The only difference is that for the second
signal scale function "add" was used.

In this signal configuration the value of second signal is calculated by adding the current value of the second signal
with the value of the first signal. Then the sum of two signals is going to be increased by 5. The third signal is going to
be calculated in the same way except that 5 is not going to be added.

To see how it works let us start Modbus TCP Slave simulation in Vinci application. You can download the
simulation here.

In the picture above you can see 6 registers. However our main focus is null, second and forth registers (Register0,
Register2, Register4) since the first three signals of Modbus Master protocol (RHR0, RHR2 and RHR4) are reading the
values of those registers (accordingly).

Let us go to WCC Lite web-interface to see how these signals are displayed there:

Signal mathematics

https://wiki.elseta.com/attachments/119
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690294670075.png
https://wiki.elseta.com/attachments/118
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690352395491.png

As we can see the values of third and fifth signals have been modified (RHR2 = 2+1+5 = 8; RHR3 = 3+1 = 4).
However the values of the signals that are displayed in the web-interface are intermediate so to speak. All the math is
done in the protocol sevices (Modbus TCP Master in this case). Then those values are transmitted to REDIS service. The
values that are displayed in the web-interface are REDIS values. We are going to see why it is important in another
example.

Now it was mentioned that the values of third and fifth signals depend on the value of the first one. Let us see what
will happen if we change the value of the Register 0. To do so we need to return to VINCI application. Locate Register 0
and double click on it. A menu with the register parameters will appear.

Now let us change the value of the register to 2:

https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690352275166.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690354650550.png

Now it would be expected that the value of second and third signals would become 9 and 5 accordingly (RHR2 =
2+2+5 = 9; RHR3 = 3+2 = 5). However if one would check WCC Lite web-interface right after that, one could notice
that second and third signals remained unchanged:

To explain this let us look again at the math expression of these signals. The equation (value +
TagValue(”tag/Master/RHR0/out”)) consists of two operands "value" and "TagValue(”tag/Master/RHR0/out”)".
Currently the system is designed in such a way that only if "value" operand has changed, only then there is going to be
a change in a signal's value. So that if values of second and forth registers are changed (increased by one in this
example) then the values of third and fifth signals are going to change taking into account the previous change in
value of Register 0 (RHR2 = 2+3+5 = 10; RHR3 = 2+4 = 6).

https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690354747437.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690355776501.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690357096636.png

In this section you will be shown how "math_expression", and other mathematical functions can be used in case of
command signals. You can download configuration to follow along here. Signals which we are concerned with in this
section are highlighted in blue color.

Let us analyze what mathematical functions are configured for the signals.

First four signals are going to be used for scale function analysis. To see how it works let us start Modbus TCP Slave
simulation in Vinci application. You can download the simulation here.

Let us go to WCC Lite web-interface to see how these signals are displayed there:

Command mathematics

https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690356862952.png
https://wiki.elseta.com/attachments/116
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690443715221.png
https://wiki.elseta.com/attachments/117
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690366211464.png

As one can notice the values displayed in Vinci application differ from values displayed in web-interface. To better
understand the results let us see step by step how signals are modified.

The first signal RHR0 reads the value of Register 0 which is equal to 4. After read operation the value is multiplied by
two in the master protocol service. Then signal is transmitted to REDIS service. REDIS value is presented in web-
interface. Then the same value 8 is written to Register 1 by sending WSR1 command signal. Finally the value of WSR1
signal is displayed in Vinci simulation.

The third signal RHR2 behaves quite the same as the first RHR0 signal. It reads value of Register 2 and without
performing any scaling operations transmits value to REDIS. It again can be seen in the web-interface. While still in
REDIS service the value of Register 2 is passed to WSR3 signal. Then command signal WSR3 is transmitted back to
Modbus Master protocol service where the value of the signal is scaled. One could expect that the value of the signal
would be multiplied by two but it is divided by two. Then the value of 2 is displayed in Vinci Slave simulation. After
changing the value of Register 3 WSR3 signal is sent back from Master Protocol service to REDIS. On its way the signal
again passes signal scaling place where it is again multiplied by two. This is why we see in the web-interface that the
value of forth signal WSR3 is 4.

All the moments when a signal passes a place where its value is scaled can be seen by turning on a debugger session.
To do so one should connect to WCC Lite via Ubuntu terminal in Terminal application. Then Modbus Master protocol
needs to be stopped by sending "/etc/init.d/modbus-master stop". Then Modbus Master protocol needs to be
started again with -m flag (m for math) "modbus-master -d7 -m -c /etc/modbus-master/modbus-tcp.json".

If you scroll up after starting the session you will be able to find how both RHR0 and WSR3 signals are scaled after
passing signal scaling place.

Why is it the case that the signal is divided instead of being multiplied by two? The answer to this question is that
scaling factor depends on the direction of the signal. When RHR0 signal was travelling from Master Protocol to REDIS
service and was passing the place where signals are scaled the signal was multiplied by scaling factor. On the other
hand when WSR3 signal was travelling from REDIS service to Master Protocol and was passing the same signal scaling
place the signal was divided by scaling factor.

Now let us analyze how "math_expression" and "source_math_expression" are applied to WSR5 signal. To get a better
insight let us look how signals are transmitted and transformed inside WCC Lite and when mathematical expressions
are applied.

https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690366270788.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690374285270.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690374494803.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690374525614.png

Let us analyze the diagram above. As we can see all basic mathematical operations (such as add, multiply, etc.) are
performed inside a Master protocol service. When signals are transmitted between protocols they travel through REDIS
service. The period of existence of a signal inside the REDIS service can be divided into four stages. They can be
denoted by their endings, namely: "rout", "out", "in" and "rin". At "out" and "rin" stages signal values can be seen
through certain interfaces that is why they are displayed in a purple color with blue eyes on them. At "out" stage a
signal is displayed on WCC Lite web-interface, at "rin" stage signal value can be seen through Vinci application. As one
could notice "math_expression" is applied before "out" stage and "source_math_expression" is performed before "rin"
stage.

However in our particular example we did not configure any Slave device. In this situation signal transportation inside
REDIS service can be depicted as following:

Let us return to our example and let us see what are the values of WSR5 signal in WCC Lite web-interface and Vinci
Slave simulation.

https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690454682295-drawio.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690446845504-drawio.png

The diagram below explains how these values were calculated.

Several functions are defined make tag operations possible:

TagValue(key) - returns last known value of tag identified by redis key;
TagFlag(key) - returns 1 if tag flag exists. Name format is: ”key flag”. For example to check if tag is non
topical, name would be ”tag/19xxxxxxx/x/x nt”;
TagAttribute(key) - similar to TagFlag, but returns a numeric value of a tag attribute;
TagTime(key) - returns UNIX timestamp in milliseconds of a last know tag value.

Extra functions

https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690451897495.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690451946031.png
https://wiki.elseta.com/uploads/images/gallery/2023-07/image-1690452517897-drawio.png

	Excel configuration
	Device configuration
	Devices sheet
	Optional settings
	Serial port settings
	TCP/IP settings

	Signals sheet
	Required attributes
	Optional attributes
	Signal recalculation operation priority
	number_type field
	Linking signals
	Example 1:
	Example 2

	Uploading configuration
	Importing an Excel file
	Generating .zip file
	Uploading configuration remotely

	Mathematical functions
	Feature list:
	Mathematical functions
	Binary operations
	Ternary operations
	Examples
	Signal mathematics
	Command mathematics
	Extra functions

